基于聚类特征的可再生能源运行控制多元数据分析与恢复方法

Yi Li, Tongxun Wang, Meng Tan, Yaqiong Li, Zhixian Pi
{"title":"基于聚类特征的可再生能源运行控制多元数据分析与恢复方法","authors":"Yi Li, Tongxun Wang, Meng Tan, Yaqiong Li, Zhixian Pi","doi":"10.1109/ICEI49372.2020.00009","DOIUrl":null,"url":null,"abstract":"Renewable energy sources is becoming the main form of energy supply side in the energy internet. To improve the absorption capacity and operation analysis level of large-scale distributed renewable energy, it is important to guarantee the accuracy of renewable energy operation data. Based on multi-scenario application analysis, this paper proposed a data quality analysis, abnormal data detection and repair method for renewable energy operation data. Firstly, the renewable energy data types are analyzed, the K-means clustering analysis method is used step by step to form data characteristic curve for data evaluation, and a diagnosis method for abnormal data. Then rough set theory is used to reduce the associated attributes of the operation data value, and establish the importance between data attribute types and data values. Finally, a predictive decision-making attributes forecasting tree is constructed to repair the abnormal data. A numerical load case verifies the effectiveness of the method.","PeriodicalId":418017,"journal":{"name":"2020 IEEE International Conference on Energy Internet (ICEI)","volume":"1997 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Feature based Multivariate Data Analysis and Recovery Method for Renewable Energy Operation and Control\",\"authors\":\"Yi Li, Tongxun Wang, Meng Tan, Yaqiong Li, Zhixian Pi\",\"doi\":\"10.1109/ICEI49372.2020.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy sources is becoming the main form of energy supply side in the energy internet. To improve the absorption capacity and operation analysis level of large-scale distributed renewable energy, it is important to guarantee the accuracy of renewable energy operation data. Based on multi-scenario application analysis, this paper proposed a data quality analysis, abnormal data detection and repair method for renewable energy operation data. Firstly, the renewable energy data types are analyzed, the K-means clustering analysis method is used step by step to form data characteristic curve for data evaluation, and a diagnosis method for abnormal data. Then rough set theory is used to reduce the associated attributes of the operation data value, and establish the importance between data attribute types and data values. Finally, a predictive decision-making attributes forecasting tree is constructed to repair the abnormal data. A numerical load case verifies the effectiveness of the method.\",\"PeriodicalId\":418017,\"journal\":{\"name\":\"2020 IEEE International Conference on Energy Internet (ICEI)\",\"volume\":\"1997 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Energy Internet (ICEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEI49372.2020.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Energy Internet (ICEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEI49372.2020.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源正在成为能源互联网中能源供给端的主要形式。为了提高大规模分布式可再生能源的消纳能力和运行分析水平,保证可再生能源运行数据的准确性至关重要。基于多场景应用分析,提出了一种针对可再生能源运行数据的数据质量分析、异常数据检测与修复方法。首先,对可再生能源数据类型进行分析,逐步采用k均值聚类分析法形成数据特征曲线进行数据评价,并提出异常数据的诊断方法。然后利用粗糙集理论对操作数据值进行关联属性约简,建立数据属性类型与数据值之间的重要性关系。最后,构建预测决策属性预测树对异常数据进行修复。数值算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster Feature based Multivariate Data Analysis and Recovery Method for Renewable Energy Operation and Control
Renewable energy sources is becoming the main form of energy supply side in the energy internet. To improve the absorption capacity and operation analysis level of large-scale distributed renewable energy, it is important to guarantee the accuracy of renewable energy operation data. Based on multi-scenario application analysis, this paper proposed a data quality analysis, abnormal data detection and repair method for renewable energy operation data. Firstly, the renewable energy data types are analyzed, the K-means clustering analysis method is used step by step to form data characteristic curve for data evaluation, and a diagnosis method for abnormal data. Then rough set theory is used to reduce the associated attributes of the operation data value, and establish the importance between data attribute types and data values. Finally, a predictive decision-making attributes forecasting tree is constructed to repair the abnormal data. A numerical load case verifies the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信