关于具有跳跃的随机捕食-食饵模型的强持续性的一个注记

Olga Borysenko, Oleksandr Borysenko
{"title":"关于具有跳跃的随机捕食-食饵模型的强持续性的一个注记","authors":"Olga Borysenko, Oleksandr Borysenko","doi":"10.19139/soic-2310-5070-1089","DOIUrl":null,"url":null,"abstract":"We study the non-autonomous stochastic predator-prey model with a modified version of Leslie-Gower term and Holling-type II functional response driven by the system of stochastic differential equations with white noise, centered and non-centered Poisson noises. The sufficient conditions of strong persistence in the mean of the solution to the considered system are obtained.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on a Strong Persistence of Stochastic Predator-Prey Model with Jumps\",\"authors\":\"Olga Borysenko, Oleksandr Borysenko\",\"doi\":\"10.19139/soic-2310-5070-1089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the non-autonomous stochastic predator-prey model with a modified version of Leslie-Gower term and Holling-type II functional response driven by the system of stochastic differential equations with white noise, centered and non-centered Poisson noises. The sufficient conditions of strong persistence in the mean of the solution to the considered system are obtained.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了由白噪声、有中心泊松噪声和无中心泊松噪声组成的随机微分方程组驱动的具有Leslie-Gower项和holling - II型函数响应的非自治随机捕食者-猎物模型。得到了该系统解的均值强持久的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on a Strong Persistence of Stochastic Predator-Prey Model with Jumps
We study the non-autonomous stochastic predator-prey model with a modified version of Leslie-Gower term and Holling-type II functional response driven by the system of stochastic differential equations with white noise, centered and non-centered Poisson noises. The sufficient conditions of strong persistence in the mean of the solution to the considered system are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信