距离依赖耦合下神经网络的同步延展性

R. Budzinski, K. L. Rossi, B. Boaretto, T. L. Prado, S. R. Lopes
{"title":"距离依赖耦合下神经网络的同步延展性","authors":"R. Budzinski, K. L. Rossi, B. Boaretto, T. L. Prado, S. R. Lopes","doi":"10.1103/physrevresearch.2.043309","DOIUrl":null,"url":null,"abstract":"We investigate the synchronization features of a network of spiking neurons under a distance-dependent coupling following a power-law model. The interplay between topology and coupling strength leads to the existence of different spatiotemporal patterns, corresponding to either non-synchronized or phase-synchronized states. Particularly interesting is what we call synchronization malleability, in which the system depicts significantly different phase synchronization degrees for the same parameters as a consequence of a different ordering of neural inputs. We analyze the functional connectivity of the network by calculating the mutual information between neuronal spike trains, allowing us to characterize the structures of synchronization in the network. We show that these structures are dependent on the ordering of the inputs for the parameter regions where the network presents synchronization malleability and we suggest that this is due to a balance between local and global effects.","PeriodicalId":298664,"journal":{"name":"arXiv: Neurons and Cognition","volume":"1997 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Synchronization malleability in neural networks under a distance-dependent coupling\",\"authors\":\"R. Budzinski, K. L. Rossi, B. Boaretto, T. L. Prado, S. R. Lopes\",\"doi\":\"10.1103/physrevresearch.2.043309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the synchronization features of a network of spiking neurons under a distance-dependent coupling following a power-law model. The interplay between topology and coupling strength leads to the existence of different spatiotemporal patterns, corresponding to either non-synchronized or phase-synchronized states. Particularly interesting is what we call synchronization malleability, in which the system depicts significantly different phase synchronization degrees for the same parameters as a consequence of a different ordering of neural inputs. We analyze the functional connectivity of the network by calculating the mutual information between neuronal spike trains, allowing us to characterize the structures of synchronization in the network. We show that these structures are dependent on the ordering of the inputs for the parameter regions where the network presents synchronization malleability and we suggest that this is due to a balance between local and global effects.\",\"PeriodicalId\":298664,\"journal\":{\"name\":\"arXiv: Neurons and Cognition\",\"volume\":\"1997 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Neurons and Cognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.2.043309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.2.043309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了一个基于幂律模型的距离依赖耦合下的尖峰神经元网络的同步特征。拓扑结构和耦合强度之间的相互作用导致了不同时空模式的存在,对应于非同步或相同步状态。特别有趣的是我们所说的同步延展性,在这种情况下,对于相同的参数,系统描述了显著不同的相位同步度,这是神经输入顺序不同的结果。我们通过计算神经元尖峰序列之间的互信息来分析网络的功能连通性,使我们能够表征网络中的同步结构。我们表明,这些结构依赖于网络呈现同步延展性的参数区域的输入顺序,我们认为这是由于局部和全局效应之间的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization malleability in neural networks under a distance-dependent coupling
We investigate the synchronization features of a network of spiking neurons under a distance-dependent coupling following a power-law model. The interplay between topology and coupling strength leads to the existence of different spatiotemporal patterns, corresponding to either non-synchronized or phase-synchronized states. Particularly interesting is what we call synchronization malleability, in which the system depicts significantly different phase synchronization degrees for the same parameters as a consequence of a different ordering of neural inputs. We analyze the functional connectivity of the network by calculating the mutual information between neuronal spike trains, allowing us to characterize the structures of synchronization in the network. We show that these structures are dependent on the ordering of the inputs for the parameter regions where the network presents synchronization malleability and we suggest that this is due to a balance between local and global effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信