用于Web导航模式聚类的增量SOM

K. Benabdeslem, Younès Bennani
{"title":"用于Web导航模式聚类的增量SOM","authors":"K. Benabdeslem, Younès Bennani","doi":"10.1109/ITI.2004.241604","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new clustering method which makes incremental the construction of an unsupervised neural model (self organizing map: SOM). In other words, the method is computed with both, the initial model based on the a priori available data and the data which arrive dynamically in the time. This approach is validated over Web navigation data and it is compared to classical neural clustering applied to the same data","PeriodicalId":320305,"journal":{"name":"26th International Conference on Information Technology Interfaces, 2004.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An incremental SOM for Web navigation patterns clustering\",\"authors\":\"K. Benabdeslem, Younès Bennani\",\"doi\":\"10.1109/ITI.2004.241604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new clustering method which makes incremental the construction of an unsupervised neural model (self organizing map: SOM). In other words, the method is computed with both, the initial model based on the a priori available data and the data which arrive dynamically in the time. This approach is validated over Web navigation data and it is compared to classical neural clustering applied to the same data\",\"PeriodicalId\":320305,\"journal\":{\"name\":\"26th International Conference on Information Technology Interfaces, 2004.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th International Conference on Information Technology Interfaces, 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITI.2004.241604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th International Conference on Information Technology Interfaces, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITI.2004.241604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的聚类方法,它使无监督神经模型(自组织映射:SOM)的构造渐进式地进行。换句话说,该方法同时计算基于先验可用数据的初始模型和在给定时间内动态到达的数据。该方法在Web导航数据上进行了验证,并与应用于相同数据的经典神经聚类进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An incremental SOM for Web navigation patterns clustering
In this paper, we present a new clustering method which makes incremental the construction of an unsupervised neural model (self organizing map: SOM). In other words, the method is computed with both, the initial model based on the a priori available data and the data which arrive dynamically in the time. This approach is validated over Web navigation data and it is compared to classical neural clustering applied to the same data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信