一种快速的虹膜提取方法

J. H. Alves, G. Giraldi, L. A. P. Neves
{"title":"一种快速的虹膜提取方法","authors":"J. H. Alves, G. Giraldi, L. A. P. Neves","doi":"10.5220/0004303700900093","DOIUrl":null,"url":null,"abstract":"In this paper, we present a technique for iris segmentation. The method finds the pupil in the first step. Next, it segments the iris using the pupil location. The proposed approach is based on the mathematical morphology operators of opening and closing, as well as histogram expansion and thresholding. The CASIA Iris Database from the Institute of Automation of the Chinese Academy of Sciences has been used for the tests. Several tests were performed with 200 different images, showing the efficiency of the proposed","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Faster Method Aiming Iris Extraction\",\"authors\":\"J. H. Alves, G. Giraldi, L. A. P. Neves\",\"doi\":\"10.5220/0004303700900093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a technique for iris segmentation. The method finds the pupil in the first step. Next, it segments the iris using the pupil location. The proposed approach is based on the mathematical morphology operators of opening and closing, as well as histogram expansion and thresholding. The CASIA Iris Database from the Institute of Automation of the Chinese Academy of Sciences has been used for the tests. Several tests were performed with 200 different images, showing the efficiency of the proposed\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0004303700900093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004303700900093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种虹膜分割技术。该方法在第一步找到瞳孔。接下来,它使用瞳孔位置分割虹膜。该方法基于数学形态学的开闭算子,以及直方图展开和阈值分割。测试使用了中国科学院自动化研究所的CASIA Iris数据库。对200张不同的图像进行了多次测试,证明了所提出方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Faster Method Aiming Iris Extraction
In this paper, we present a technique for iris segmentation. The method finds the pupil in the first step. Next, it segments the iris using the pupil location. The proposed approach is based on the mathematical morphology operators of opening and closing, as well as histogram expansion and thresholding. The CASIA Iris Database from the Institute of Automation of the Chinese Academy of Sciences has been used for the tests. Several tests were performed with 200 different images, showing the efficiency of the proposed
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信