使用节俭快速判断的连接组学的高通量图像对齐

Tim Kaler, Brian Wheatman, Sarah Wooders
{"title":"使用节俭快速判断的连接组学的高通量图像对齐","authors":"Tim Kaler, Brian Wheatman, Sarah Wooders","doi":"10.1109/HPEC43674.2020.9286243","DOIUrl":null,"url":null,"abstract":"The accuracy and computational efficiency of image alignment directly affects the advancement of connectomics, a field which seeks to understand the structure of the brain through electron microscopy. We introduce the algorithms Quilter and Stacker that are designed to perform 2D and 3D alignment respectively on petabyte-scale data sets from connectomics. Quilter and Stacker are efficient, scalable, and can run on hardware ranging from a researcher's laptop to a large computing cluster. On a single 18-core cloud machine each algorithm achieves throughputs of more than 1 TB/hr; when combined the algorithms produce an end-to-end alignment pipeline that processes data at a rate of 0.82 TB/hr - an over 10x improvement from previous systems. This efficiency comes from both traditional optimizations and from the use of “Frugal Snap Judgments” to judiciously exploit performance-accuracy trade-offs. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr. We introduce the algorithms Quilter and Stacker that are designed to perform 2D and 3D alignment respectively on petabyte-scale data sets from connectomics. Quilter and Stacker are efficient, scalable, and can run on hardware ranging from a researcher's laptop to a large computing cluster. On a single 18-core cloud machine each algorithm achieves throughputs of more than 1 TB/hr; when combined the algorithms produce an end-to-end alignment pipeline that processes data at a rate of 0.82 TB/hr - an over 10x improvement from previous systems. This efficiency comes from both traditional optimizations and from the use of “Frugal Snap Judgments” to judiciously exploit performance-accuracy trade-offs. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Image Alignment for Connectomics using Frugal Snap Judgments\",\"authors\":\"Tim Kaler, Brian Wheatman, Sarah Wooders\",\"doi\":\"10.1109/HPEC43674.2020.9286243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy and computational efficiency of image alignment directly affects the advancement of connectomics, a field which seeks to understand the structure of the brain through electron microscopy. We introduce the algorithms Quilter and Stacker that are designed to perform 2D and 3D alignment respectively on petabyte-scale data sets from connectomics. Quilter and Stacker are efficient, scalable, and can run on hardware ranging from a researcher's laptop to a large computing cluster. On a single 18-core cloud machine each algorithm achieves throughputs of more than 1 TB/hr; when combined the algorithms produce an end-to-end alignment pipeline that processes data at a rate of 0.82 TB/hr - an over 10x improvement from previous systems. This efficiency comes from both traditional optimizations and from the use of “Frugal Snap Judgments” to judiciously exploit performance-accuracy trade-offs. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr. We introduce the algorithms Quilter and Stacker that are designed to perform 2D and 3D alignment respectively on petabyte-scale data sets from connectomics. Quilter and Stacker are efficient, scalable, and can run on hardware ranging from a researcher's laptop to a large computing cluster. On a single 18-core cloud machine each algorithm achieves throughputs of more than 1 TB/hr; when combined the algorithms produce an end-to-end alignment pipeline that processes data at a rate of 0.82 TB/hr - an over 10x improvement from previous systems. This efficiency comes from both traditional optimizations and from the use of “Frugal Snap Judgments” to judiciously exploit performance-accuracy trade-offs. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像对齐的准确性和计算效率直接影响到连接组学的发展,连接组学是一个试图通过电子显微镜了解大脑结构的领域。我们介绍了Quilter和Stacker算法,它们分别用于在连接组学的pb级数据集上执行2D和3D对齐。Quilter和Stacker是高效的,可扩展的,并且可以在从研究人员的笔记本电脑到大型计算集群的硬件上运行。在单个18核云机器上,每个算法实现的吞吐量超过1tb /hr;当这些算法结合在一起时,就产生了端到端对齐管道,处理数据的速度为0.82 TB/hr,比以前的系统提高了10倍以上。这种效率既来自传统的优化,也来自使用“节俭的快速判断”来明智地利用性能-准确性权衡。采用Quilter和Stacker算法实现了高通量图像对齐管道,并使用三个数据集(大小从550 GB到38 TB)对其性能进行了评估。全对齐流水线在18核和112核共享内存多核上分别实现了0.6-0.8 TB/hr和1.4-1.5 TB/hr的吞吐量。在一个拥有200个节点和1600个核的超级计算集群上,管道的吞吐量达到了21.4 TB/hr。我们介绍了Quilter和Stacker算法,它们分别用于在连接组学的pb级数据集上执行2D和3D对齐。Quilter和Stacker是高效的,可扩展的,并且可以在从研究人员的笔记本电脑到大型计算集群的硬件上运行。在单个18核云机器上,每个算法实现的吞吐量超过1tb /hr;当这些算法结合在一起时,就产生了端到端对齐管道,处理数据的速度为0.82 TB/hr,比以前的系统提高了10倍以上。这种效率既来自传统的优化,也来自使用“节俭的快速判断”来明智地利用性能-准确性权衡。采用Quilter和Stacker算法实现了高通量图像对齐管道,并使用三个数据集(大小从550 GB到38 TB)对其性能进行了评估。全对齐流水线在18核和112核共享内存多核上分别实现了0.6-0.8 TB/hr和1.4-1.5 TB/hr的吞吐量。在一个拥有200个节点和1600个核的超级计算集群上,管道的吞吐量达到了21.4 TB/hr。采用Quilter和Stacker算法实现了高通量图像对齐管道,并使用三个数据集(大小从550 GB到38 TB)对其性能进行了评估。全对齐流水线在18核和112核共享内存多核上分别实现了0.6-0.8 TB/hr和1.4-1.5 TB/hr的吞吐量。在一个拥有200个节点和1600个核的超级计算集群上,管道的吞吐量达到了21.4 TB/hr。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-Throughput Image Alignment for Connectomics using Frugal Snap Judgments
The accuracy and computational efficiency of image alignment directly affects the advancement of connectomics, a field which seeks to understand the structure of the brain through electron microscopy. We introduce the algorithms Quilter and Stacker that are designed to perform 2D and 3D alignment respectively on petabyte-scale data sets from connectomics. Quilter and Stacker are efficient, scalable, and can run on hardware ranging from a researcher's laptop to a large computing cluster. On a single 18-core cloud machine each algorithm achieves throughputs of more than 1 TB/hr; when combined the algorithms produce an end-to-end alignment pipeline that processes data at a rate of 0.82 TB/hr - an over 10x improvement from previous systems. This efficiency comes from both traditional optimizations and from the use of “Frugal Snap Judgments” to judiciously exploit performance-accuracy trade-offs. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr. We introduce the algorithms Quilter and Stacker that are designed to perform 2D and 3D alignment respectively on petabyte-scale data sets from connectomics. Quilter and Stacker are efficient, scalable, and can run on hardware ranging from a researcher's laptop to a large computing cluster. On a single 18-core cloud machine each algorithm achieves throughputs of more than 1 TB/hr; when combined the algorithms produce an end-to-end alignment pipeline that processes data at a rate of 0.82 TB/hr - an over 10x improvement from previous systems. This efficiency comes from both traditional optimizations and from the use of “Frugal Snap Judgments” to judiciously exploit performance-accuracy trade-offs. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr. A high-throughput image-alignment pipeline was implemented using the Quilter and Stacker algorithms and its performance was evaluated using three datasets whose size ranged from 550 GB to 38 TB. The full alignment pipeline achieved a throughput of 0.6-0.8 TB/hr and 1.4-1.5 TB/hr on an 18-core and 112-core shared-memory multicore, respectively. On a supercomputing cluster with 200 nodes and 1600 total cores, the pipeline achieved a throughput of 21.4 TB/hr.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信