我们能预测代码更改的类型吗?实证分析

E. Giger, M. Pinzger, H. Gall
{"title":"我们能预测代码更改的类型吗?实证分析","authors":"E. Giger, M. Pinzger, H. Gall","doi":"10.1109/MSR.2012.6224284","DOIUrl":null,"url":null,"abstract":"There exist many approaches that help in pointing developers to the change-prone parts of a software system. Although beneficial, they mostly fall short in providing details of these changes. Fine-grained source code changes (SCC) capture such detailed code changes and their semantics on the statement level. These SCC can be condition changes, interface modifications, inserts or deletions of methods and attributes, or other kinds of statement changes. In this paper, we explore prediction models for whether a source file will be affected by a certain type of SCC. These predictions are computed on the static source code dependency graph and use social network centrality measures and object-oriented metrics. For that, we use change data of the Eclipse platform and the Azureus 3 project. The results show that Neural Network models can predict categories of SCC types. Furthermore, our models can output a list of the potentially change-prone files ranked according to their change-proneness, overall and per change type category.","PeriodicalId":383774,"journal":{"name":"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Can we predict types of code changes? An empirical analysis\",\"authors\":\"E. Giger, M. Pinzger, H. Gall\",\"doi\":\"10.1109/MSR.2012.6224284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exist many approaches that help in pointing developers to the change-prone parts of a software system. Although beneficial, they mostly fall short in providing details of these changes. Fine-grained source code changes (SCC) capture such detailed code changes and their semantics on the statement level. These SCC can be condition changes, interface modifications, inserts or deletions of methods and attributes, or other kinds of statement changes. In this paper, we explore prediction models for whether a source file will be affected by a certain type of SCC. These predictions are computed on the static source code dependency graph and use social network centrality measures and object-oriented metrics. For that, we use change data of the Eclipse platform and the Azureus 3 project. The results show that Neural Network models can predict categories of SCC types. Furthermore, our models can output a list of the potentially change-prone files ranked according to their change-proneness, overall and per change type category.\",\"PeriodicalId\":383774,\"journal\":{\"name\":\"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2012.6224284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th IEEE Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2012.6224284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

有许多方法可以帮助开发人员指出软件系统中易于更改的部分。尽管它们是有益的,但它们大多无法提供这些变化的细节。细粒度源代码更改(SCC)在语句级别捕获这些详细的代码更改及其语义。这些SCC可以是条件更改、接口修改、方法和属性的插入或删除,或者其他类型的语句更改。在本文中,我们探讨了源文件是否会受到某种类型SCC影响的预测模型。这些预测是在静态源代码依赖图上计算的,并使用社会网络中心性度量和面向对象的度量。为此,我们使用了Eclipse平台和Azureus 3项目的变更数据。结果表明,神经网络模型可以预测SCC类型的分类。此外,我们的模型可以根据它们的变更倾向、总体和每个变更类型类别,输出潜在的易变更文件列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can we predict types of code changes? An empirical analysis
There exist many approaches that help in pointing developers to the change-prone parts of a software system. Although beneficial, they mostly fall short in providing details of these changes. Fine-grained source code changes (SCC) capture such detailed code changes and their semantics on the statement level. These SCC can be condition changes, interface modifications, inserts or deletions of methods and attributes, or other kinds of statement changes. In this paper, we explore prediction models for whether a source file will be affected by a certain type of SCC. These predictions are computed on the static source code dependency graph and use social network centrality measures and object-oriented metrics. For that, we use change data of the Eclipse platform and the Azureus 3 project. The results show that Neural Network models can predict categories of SCC types. Furthermore, our models can output a list of the potentially change-prone files ranked according to their change-proneness, overall and per change type category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信