基于形态属性滤波和独立分量分析的高光谱图像分类

M. Mura, A. Villa, J. Benediktsson, J. Chanussot, L. Bruzzone
{"title":"基于形态属性滤波和独立分量分析的高光谱图像分类","authors":"M. Mura, A. Villa, J. Benediktsson, J. Chanussot, L. Bruzzone","doi":"10.1109/WHISPERS.2010.5594964","DOIUrl":null,"url":null,"abstract":"In this paper, a technique based on Independent Component Analysis (ICA) and morphological attribute filters is presented for the classification of high geometrical resolution hyperspectral images. The ICA is computed instead of the conventional principal component analysis (PCA) in order to better model the information in the hyperspectral image. The spatial characteristics of the objects in the scene are modeled by different multi-level attribute filters. Moreover, a method for increasing the robustness of the analysis based on a decision fusion strategy is proposed. A hyperspectral high resolution image acquired over the city of Pavia (Italy) was considered in the experiments.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classification of hyperspectral images by using morphological attribute filters and Independent Component Analysis\",\"authors\":\"M. Mura, A. Villa, J. Benediktsson, J. Chanussot, L. Bruzzone\",\"doi\":\"10.1109/WHISPERS.2010.5594964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a technique based on Independent Component Analysis (ICA) and morphological attribute filters is presented for the classification of high geometrical resolution hyperspectral images. The ICA is computed instead of the conventional principal component analysis (PCA) in order to better model the information in the hyperspectral image. The spatial characteristics of the objects in the scene are modeled by different multi-level attribute filters. Moreover, a method for increasing the robustness of the analysis based on a decision fusion strategy is proposed. A hyperspectral high resolution image acquired over the city of Pavia (Italy) was considered in the experiments.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于独立分量分析(ICA)和形态属性滤波器的高几何分辨率高光谱图像分类方法。为了更好地对高光谱图像中的信息进行建模,采用主成分分析代替传统的主成分分析。通过不同的多层次属性滤波器对场景中物体的空间特征进行建模。此外,提出了一种基于决策融合策略提高分析鲁棒性的方法。实验中考虑了在意大利帕维亚市上空获得的高光谱高分辨率图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of hyperspectral images by using morphological attribute filters and Independent Component Analysis
In this paper, a technique based on Independent Component Analysis (ICA) and morphological attribute filters is presented for the classification of high geometrical resolution hyperspectral images. The ICA is computed instead of the conventional principal component analysis (PCA) in order to better model the information in the hyperspectral image. The spatial characteristics of the objects in the scene are modeled by different multi-level attribute filters. Moreover, a method for increasing the robustness of the analysis based on a decision fusion strategy is proposed. A hyperspectral high resolution image acquired over the city of Pavia (Italy) was considered in the experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信