局内人困境:重复博弈的通解

Cesi Berardino, Walter Ferrarese
{"title":"局内人困境:重复博弈的通解","authors":"Cesi Berardino, Walter Ferrarese","doi":"10.2139/ssrn.2630634","DOIUrl":null,"url":null,"abstract":"We show that in an infinitely repeated Cournot game when firms adopt stick and carrot strategies exogenous horizontal mergers are profitable regardless the size of the merged entity. We characterize an equilibrium in which the new entity maximizes its discounted intertemporal profit under the constraint that each outsider produces just enough to be better off after the merger. Once the merger has occurred each insider gains more than each outsider, therefore the insider's dilemma is completely solved.","PeriodicalId":416571,"journal":{"name":"CEIS: Centre for Economic & International Studies Working Paper Series","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insider's Dilemma: A General Solution in a Repeated Game\",\"authors\":\"Cesi Berardino, Walter Ferrarese\",\"doi\":\"10.2139/ssrn.2630634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that in an infinitely repeated Cournot game when firms adopt stick and carrot strategies exogenous horizontal mergers are profitable regardless the size of the merged entity. We characterize an equilibrium in which the new entity maximizes its discounted intertemporal profit under the constraint that each outsider produces just enough to be better off after the merger. Once the merger has occurred each insider gains more than each outsider, therefore the insider's dilemma is completely solved.\",\"PeriodicalId\":416571,\"journal\":{\"name\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CEIS: Centre for Economic & International Studies Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2630634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEIS: Centre for Economic & International Studies Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2630634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在无限重复的古诺博弈中,当企业采用大棒和胡萝卜策略时,无论合并实体的规模大小,外生水平合并都是有利可图的。我们描述了一种均衡,在这种均衡中,新实体在约束下最大化其跨期贴现利润,即每个外部实体在合并后生产的产品刚好足够使其更好。一旦合并发生,每个内部人的收益都比每个外部人多,因此内部人的困境就完全解决了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insider's Dilemma: A General Solution in a Repeated Game
We show that in an infinitely repeated Cournot game when firms adopt stick and carrot strategies exogenous horizontal mergers are profitable regardless the size of the merged entity. We characterize an equilibrium in which the new entity maximizes its discounted intertemporal profit under the constraint that each outsider produces just enough to be better off after the merger. Once the merger has occurred each insider gains more than each outsider, therefore the insider's dilemma is completely solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信