Pavlos Petoumenos, G. Keramidas, Håkan Zeffer, S. Kaxiras, Erik Hagersten
{"title":"芯片多处理器架构上的缓存共享建模","authors":"Pavlos Petoumenos, G. Keramidas, Håkan Zeffer, S. Kaxiras, Erik Hagersten","doi":"10.1109/IISWC.2006.302740","DOIUrl":null,"url":null,"abstract":"As CMPs are emerging as the dominant architecture for a wide range of platforms (from embedded systems and game consoles, to PCs, and to servers) the need to manage on-chip resources, such as shared caches, becomes a necessity. In this paper we propose a new statistical model of a CMP shared cache which not only describes cache sharing but also its management via a novel fine-grain mechanism. Our model, called StatShare, accurately describes the behavior of the sharing threads using run-time information (reuse-distance information for memory accesses) and helps us understand how effectively each thread uses its space. The mechanism to manage the cache at the cache-line granularity is inspired by cache decay, but contains important differences. Decayed cache-lines are not turned-off to save leakage but are rather \"available for replacement.\" Decay modifies the underlying replacement policy (random, LRU) to control sharing but in a very flexible and non-strict way which makes it superior to strict cache partitioning schemes (both fine and coarse grained). The statistical model allows us to assess a thread's cache behavior under decay. Detailed CMP simulations show that: i) StatShare accurately predicts the thread behavior in a shared cache, ii) managing sharing via decay (in combination with the StatShare run time information) can be used to enforce external QoS requirements or various high-level fairness policies","PeriodicalId":222041,"journal":{"name":"2006 IEEE International Symposium on Workload Characterization","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Modeling Cache Sharing on Chip Multiprocessor Architectures\",\"authors\":\"Pavlos Petoumenos, G. Keramidas, Håkan Zeffer, S. Kaxiras, Erik Hagersten\",\"doi\":\"10.1109/IISWC.2006.302740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As CMPs are emerging as the dominant architecture for a wide range of platforms (from embedded systems and game consoles, to PCs, and to servers) the need to manage on-chip resources, such as shared caches, becomes a necessity. In this paper we propose a new statistical model of a CMP shared cache which not only describes cache sharing but also its management via a novel fine-grain mechanism. Our model, called StatShare, accurately describes the behavior of the sharing threads using run-time information (reuse-distance information for memory accesses) and helps us understand how effectively each thread uses its space. The mechanism to manage the cache at the cache-line granularity is inspired by cache decay, but contains important differences. Decayed cache-lines are not turned-off to save leakage but are rather \\\"available for replacement.\\\" Decay modifies the underlying replacement policy (random, LRU) to control sharing but in a very flexible and non-strict way which makes it superior to strict cache partitioning schemes (both fine and coarse grained). The statistical model allows us to assess a thread's cache behavior under decay. Detailed CMP simulations show that: i) StatShare accurately predicts the thread behavior in a shared cache, ii) managing sharing via decay (in combination with the StatShare run time information) can be used to enforce external QoS requirements or various high-level fairness policies\",\"PeriodicalId\":222041,\"journal\":{\"name\":\"2006 IEEE International Symposium on Workload Characterization\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Symposium on Workload Characterization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IISWC.2006.302740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Symposium on Workload Characterization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISWC.2006.302740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Cache Sharing on Chip Multiprocessor Architectures
As CMPs are emerging as the dominant architecture for a wide range of platforms (from embedded systems and game consoles, to PCs, and to servers) the need to manage on-chip resources, such as shared caches, becomes a necessity. In this paper we propose a new statistical model of a CMP shared cache which not only describes cache sharing but also its management via a novel fine-grain mechanism. Our model, called StatShare, accurately describes the behavior of the sharing threads using run-time information (reuse-distance information for memory accesses) and helps us understand how effectively each thread uses its space. The mechanism to manage the cache at the cache-line granularity is inspired by cache decay, but contains important differences. Decayed cache-lines are not turned-off to save leakage but are rather "available for replacement." Decay modifies the underlying replacement policy (random, LRU) to control sharing but in a very flexible and non-strict way which makes it superior to strict cache partitioning schemes (both fine and coarse grained). The statistical model allows us to assess a thread's cache behavior under decay. Detailed CMP simulations show that: i) StatShare accurately predicts the thread behavior in a shared cache, ii) managing sharing via decay (in combination with the StatShare run time information) can be used to enforce external QoS requirements or various high-level fairness policies