{"title":"合成类特定孟加拉语手写字符生成使用条件生成对抗网络","authors":"Zinnia Khan Nishat, Md Shopon","doi":"10.1109/ICBSLP47725.2019.201475","DOIUrl":null,"url":null,"abstract":"Bangla handwritten character recognition is known to be one of the most classical problem in the field of machine learning. In order to solve a machine learning problem one must thing is dataset. The more varied data a model sees the better it learns. Generative adversarial networks (GANs) are a group of neural networks that are used in unsupervised machine learning. It helps to resolve many difficult operations such as image generation from description, transforming low resolution image into high resolution, retrieving image contents given a small pattern etc. GAN's have many other promising applications in machine learning. There are many variations available for GAN. One of the variation of GAN is Conditional Generative Adversarial Networks(cGAN). This kind of GAN is used for generating a specific type of image. In this work we have used cGAN for generating Class Based Character Generation. This work can help researchers to generate handwritten characters to enhance the perfomance of deep learning models. We have trained this model to generate 50 Basic Bangla Characters, 10 Bangla Numerals and 24 Compound characters.","PeriodicalId":413077,"journal":{"name":"2019 International Conference on Bangla Speech and Language Processing (ICBSLP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Synthetic Class Specific Bangla Handwritten Character Generation Using Conditional Generative Adversarial Networks\",\"authors\":\"Zinnia Khan Nishat, Md Shopon\",\"doi\":\"10.1109/ICBSLP47725.2019.201475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bangla handwritten character recognition is known to be one of the most classical problem in the field of machine learning. In order to solve a machine learning problem one must thing is dataset. The more varied data a model sees the better it learns. Generative adversarial networks (GANs) are a group of neural networks that are used in unsupervised machine learning. It helps to resolve many difficult operations such as image generation from description, transforming low resolution image into high resolution, retrieving image contents given a small pattern etc. GAN's have many other promising applications in machine learning. There are many variations available for GAN. One of the variation of GAN is Conditional Generative Adversarial Networks(cGAN). This kind of GAN is used for generating a specific type of image. In this work we have used cGAN for generating Class Based Character Generation. This work can help researchers to generate handwritten characters to enhance the perfomance of deep learning models. We have trained this model to generate 50 Basic Bangla Characters, 10 Bangla Numerals and 24 Compound characters.\",\"PeriodicalId\":413077,\"journal\":{\"name\":\"2019 International Conference on Bangla Speech and Language Processing (ICBSLP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Bangla Speech and Language Processing (ICBSLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBSLP47725.2019.201475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Bangla Speech and Language Processing (ICBSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBSLP47725.2019.201475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthetic Class Specific Bangla Handwritten Character Generation Using Conditional Generative Adversarial Networks
Bangla handwritten character recognition is known to be one of the most classical problem in the field of machine learning. In order to solve a machine learning problem one must thing is dataset. The more varied data a model sees the better it learns. Generative adversarial networks (GANs) are a group of neural networks that are used in unsupervised machine learning. It helps to resolve many difficult operations such as image generation from description, transforming low resolution image into high resolution, retrieving image contents given a small pattern etc. GAN's have many other promising applications in machine learning. There are many variations available for GAN. One of the variation of GAN is Conditional Generative Adversarial Networks(cGAN). This kind of GAN is used for generating a specific type of image. In this work we have used cGAN for generating Class Based Character Generation. This work can help researchers to generate handwritten characters to enhance the perfomance of deep learning models. We have trained this model to generate 50 Basic Bangla Characters, 10 Bangla Numerals and 24 Compound characters.