使用随机森林模型在预定义的交易量窗口中预测莱特币价格走势

Guilherme Palazzo, E. Sbruzzi, C. Nascimento, M. Leles
{"title":"使用随机森林模型在预定义的交易量窗口中预测莱特币价格走势","authors":"Guilherme Palazzo, E. Sbruzzi, C. Nascimento, M. Leles","doi":"10.1109/SysCon53073.2023.10131080","DOIUrl":null,"url":null,"abstract":"Over the past years, there has been a growing interest in cryptocurrency markets. In this context, price forecasting initiatives that aid in the decision-making process of investors and market participants have emerged and drawn the interest of academia and the financial technology industry. In this paper, we present a machine learning classification model that forecasts the price direction - top, modeled as 1, or neutral or bottom, modeled as 0 - of Litecoin (LTC) over the forecast horizon equivalent to volume-wise samples of 100 thousand LTC. For modeling, we adopt a random forest classifier, achieving an Area Under the Receiver Operating Characteristic curve (AUROC or AUC) score of 0.65 on the hold-out, out-of-time test subset.","PeriodicalId":169296,"journal":{"name":"2023 IEEE International Systems Conference (SysCon)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Litecoin price movement in a pre-defined trading volume window using Random Forest model\",\"authors\":\"Guilherme Palazzo, E. Sbruzzi, C. Nascimento, M. Leles\",\"doi\":\"10.1109/SysCon53073.2023.10131080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past years, there has been a growing interest in cryptocurrency markets. In this context, price forecasting initiatives that aid in the decision-making process of investors and market participants have emerged and drawn the interest of academia and the financial technology industry. In this paper, we present a machine learning classification model that forecasts the price direction - top, modeled as 1, or neutral or bottom, modeled as 0 - of Litecoin (LTC) over the forecast horizon equivalent to volume-wise samples of 100 thousand LTC. For modeling, we adopt a random forest classifier, achieving an Area Under the Receiver Operating Characteristic curve (AUROC or AUC) score of 0.65 on the hold-out, out-of-time test subset.\",\"PeriodicalId\":169296,\"journal\":{\"name\":\"2023 IEEE International Systems Conference (SysCon)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Systems Conference (SysCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SysCon53073.2023.10131080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Systems Conference (SysCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SysCon53073.2023.10131080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,人们对加密货币市场的兴趣越来越大。在这种背景下,有助于投资者和市场参与者决策过程的价格预测举措已经出现,并引起了学术界和金融科技行业的兴趣。在本文中,我们提出了一个机器学习分类模型,该模型预测莱特币(LTC)的价格方向-顶部,建模为1,或中性或底部,建模为0 -在预测范围内相当于10万LTC的批量样本。对于建模,我们采用随机森林分类器,在延迟、超时测试子集上实现了接收者工作特征曲线下面积(AUROC或AUC)得分为0.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Litecoin price movement in a pre-defined trading volume window using Random Forest model
Over the past years, there has been a growing interest in cryptocurrency markets. In this context, price forecasting initiatives that aid in the decision-making process of investors and market participants have emerged and drawn the interest of academia and the financial technology industry. In this paper, we present a machine learning classification model that forecasts the price direction - top, modeled as 1, or neutral or bottom, modeled as 0 - of Litecoin (LTC) over the forecast horizon equivalent to volume-wise samples of 100 thousand LTC. For modeling, we adopt a random forest classifier, achieving an Area Under the Receiver Operating Characteristic curve (AUROC or AUC) score of 0.65 on the hold-out, out-of-time test subset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信