一种新的动态神经网络在线训练方法

F. Chowdhury
{"title":"一种新的动态神经网络在线训练方法","authors":"F. Chowdhury","doi":"10.1109/CCA.2001.973857","DOIUrl":null,"url":null,"abstract":"A fast, efficient, and novel way of online training of dynamic neural networks is presented in this paper. The method is based on a combination of recursive least-squares and backpropagation; in a large number of cases, backpropagation can be avoided altogether. The proposed method would be suitable for real-time identification, fault detection, and control of uncertain dynamic systems.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method for online training of dynamic neural networks\",\"authors\":\"F. Chowdhury\",\"doi\":\"10.1109/CCA.2001.973857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast, efficient, and novel way of online training of dynamic neural networks is presented in this paper. The method is based on a combination of recursive least-squares and backpropagation; in a large number of cases, backpropagation can be avoided altogether. The proposed method would be suitable for real-time identification, fault detection, and control of uncertain dynamic systems.\",\"PeriodicalId\":365390,\"journal\":{\"name\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2001.973857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.973857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种快速、高效、新颖的动态神经网络在线训练方法。该方法基于递推最小二乘和反向传播相结合的方法;在很多情况下,反向传播是完全可以避免的。该方法适用于不确定动态系统的实时识别、故障检测和控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel method for online training of dynamic neural networks
A fast, efficient, and novel way of online training of dynamic neural networks is presented in this paper. The method is based on a combination of recursive least-squares and backpropagation; in a large number of cases, backpropagation can be avoided altogether. The proposed method would be suitable for real-time identification, fault detection, and control of uncertain dynamic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信