使用个体轨迹的走廊学习

Nikolaos Zygouras, D. Gunopulos
{"title":"使用个体轨迹的走廊学习","authors":"Nikolaos Zygouras, D. Gunopulos","doi":"10.1109/MDM.2018.00032","DOIUrl":null,"url":null,"abstract":"The rapid development and commercialization of location acquisition technologies generates large trajectory datasets, that trace moving objects' trips. In this work, we propose a new trajectory mining algorithm, for discovering paths that are frequently followed by the given trajectories, named as corridors. We claim that the moving objects follow common paths-corridors. Detecting corridors from a collection of trajectories is extremely challenging due to the nature of the data (low sampling rates, different speeds, noisy measurements etc.). In this work we propose and evaluate a pipelined algorithm that abstracts from trajectories their underlying frequent paths.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Corridor Learning Using Individual Trajectories\",\"authors\":\"Nikolaos Zygouras, D. Gunopulos\",\"doi\":\"10.1109/MDM.2018.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development and commercialization of location acquisition technologies generates large trajectory datasets, that trace moving objects' trips. In this work, we propose a new trajectory mining algorithm, for discovering paths that are frequently followed by the given trajectories, named as corridors. We claim that the moving objects follow common paths-corridors. Detecting corridors from a collection of trajectories is extremely challenging due to the nature of the data (low sampling rates, different speeds, noisy measurements etc.). In this work we propose and evaluate a pipelined algorithm that abstracts from trajectories their underlying frequent paths.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

位置获取技术的快速发展和商业化产生了大型轨迹数据集,可以跟踪移动物体的行程。在这项工作中,我们提出了一种新的轨迹挖掘算法,用于发现被给定轨迹经常跟随的路径,称为走廊。我们声称移动的物体遵循共同的路径——走廊。由于数据的性质(低采样率、不同的速度、噪声测量等),从轨迹集合中检测走廊极具挑战性。在这项工作中,我们提出并评估了一种流水线算法,该算法从轨迹中抽象出其潜在的频繁路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Corridor Learning Using Individual Trajectories
The rapid development and commercialization of location acquisition technologies generates large trajectory datasets, that trace moving objects' trips. In this work, we propose a new trajectory mining algorithm, for discovering paths that are frequently followed by the given trajectories, named as corridors. We claim that the moving objects follow common paths-corridors. Detecting corridors from a collection of trajectories is extremely challenging due to the nature of the data (low sampling rates, different speeds, noisy measurements etc.). In this work we propose and evaluate a pipelined algorithm that abstracts from trajectories their underlying frequent paths.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信