{"title":"使用传统机器学习和深度学习对多语言用户反馈进行分类","authors":"Christoph Stanik, Marlo Häring, W. Maalej","doi":"10.1109/REW.2019.00046","DOIUrl":null,"url":null,"abstract":"With the rise of social media like Twitter and of software distribution platforms like app stores, users got various ways to express their opinion about software products. Popular software vendors get user feedback thousandfold per day. Research has shown that such feedback contains valuable information for software development teams such as problem reports or feature and support inquires. Since the manual analysis of user feedback is cumbersome and hard to manage many researchers and tool vendors suggested to use automated analyses based on traditional supervised machine learning approaches. In this work, we compare the results of traditional machine learning and deep learning in classifying user feedback in English and Italian into problem reports, inquiries, and irrelevant. Our results show that using traditional machine learning, we can still achieve comparable results to deep learning, although we collected thousands of labels.","PeriodicalId":166923,"journal":{"name":"2019 IEEE 27th International Requirements Engineering Conference Workshops (REW)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Classifying Multilingual User Feedback using Traditional Machine Learning and Deep Learning\",\"authors\":\"Christoph Stanik, Marlo Häring, W. Maalej\",\"doi\":\"10.1109/REW.2019.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rise of social media like Twitter and of software distribution platforms like app stores, users got various ways to express their opinion about software products. Popular software vendors get user feedback thousandfold per day. Research has shown that such feedback contains valuable information for software development teams such as problem reports or feature and support inquires. Since the manual analysis of user feedback is cumbersome and hard to manage many researchers and tool vendors suggested to use automated analyses based on traditional supervised machine learning approaches. In this work, we compare the results of traditional machine learning and deep learning in classifying user feedback in English and Italian into problem reports, inquiries, and irrelevant. Our results show that using traditional machine learning, we can still achieve comparable results to deep learning, although we collected thousands of labels.\",\"PeriodicalId\":166923,\"journal\":{\"name\":\"2019 IEEE 27th International Requirements Engineering Conference Workshops (REW)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 27th International Requirements Engineering Conference Workshops (REW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REW.2019.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 27th International Requirements Engineering Conference Workshops (REW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REW.2019.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classifying Multilingual User Feedback using Traditional Machine Learning and Deep Learning
With the rise of social media like Twitter and of software distribution platforms like app stores, users got various ways to express their opinion about software products. Popular software vendors get user feedback thousandfold per day. Research has shown that such feedback contains valuable information for software development teams such as problem reports or feature and support inquires. Since the manual analysis of user feedback is cumbersome and hard to manage many researchers and tool vendors suggested to use automated analyses based on traditional supervised machine learning approaches. In this work, we compare the results of traditional machine learning and deep learning in classifying user feedback in English and Italian into problem reports, inquiries, and irrelevant. Our results show that using traditional machine learning, we can still achieve comparable results to deep learning, although we collected thousands of labels.