Intentable:基于意图的图表标题的混合主动系统

Ji-Won Choi, Jaemin Jo
{"title":"Intentable:基于意图的图表标题的混合主动系统","authors":"Ji-Won Choi, Jaemin Jo","doi":"10.1109/VIS54862.2022.00017","DOIUrl":null,"url":null,"abstract":"We present Intentable, a mixed-initiative caption authoring system that allows the author to steer an automatic caption generation pro-cess to reflect their intent, e.g., the finding that the author gained from visualization and thus wants to write a caption for. We first derive a grammar for specifying the intent, i.e., a caption recipe, and build a neural network that generates caption sentences given a recipe. Our quantitative evaluation revealed that our intent-based generation system not only allows the author to engage in the generation process but also produces more fluent captions than the previous end-to-end approaches without user intervention. Finally, we demonstrate the versatility of our system, such as context adaptation, unit conversion, and sentence reordering.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intentable: A Mixed-Initiative System for Intent-Based Chart Captioning\",\"authors\":\"Ji-Won Choi, Jaemin Jo\",\"doi\":\"10.1109/VIS54862.2022.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Intentable, a mixed-initiative caption authoring system that allows the author to steer an automatic caption generation pro-cess to reflect their intent, e.g., the finding that the author gained from visualization and thus wants to write a caption for. We first derive a grammar for specifying the intent, i.e., a caption recipe, and build a neural network that generates caption sentences given a recipe. Our quantitative evaluation revealed that our intent-based generation system not only allows the author to engage in the generation process but also produces more fluent captions than the previous end-to-end approaches without user intervention. Finally, we demonstrate the versatility of our system, such as context adaptation, unit conversion, and sentence reordering.\",\"PeriodicalId\":190244,\"journal\":{\"name\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Visualization and Visual Analytics (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS54862.2022.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了Intentable,一个混合主动的标题创作系统,允许作者引导自动标题生成过程来反映他们的意图,例如,作者从可视化中获得的发现,因此想要写一个标题。我们首先推导出用于指定意图的语法,即标题配方,然后构建一个神经网络,在给定配方的情况下生成标题句子。我们的定量评估表明,我们的基于意图的生成系统不仅允许作者参与生成过程,而且比以前的端到端方法在没有用户干预的情况下生成更流畅的标题。最后,我们展示了系统的多功能性,例如上下文适应、单位转换和句子重新排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intentable: A Mixed-Initiative System for Intent-Based Chart Captioning
We present Intentable, a mixed-initiative caption authoring system that allows the author to steer an automatic caption generation pro-cess to reflect their intent, e.g., the finding that the author gained from visualization and thus wants to write a caption for. We first derive a grammar for specifying the intent, i.e., a caption recipe, and build a neural network that generates caption sentences given a recipe. Our quantitative evaluation revealed that our intent-based generation system not only allows the author to engage in the generation process but also produces more fluent captions than the previous end-to-end approaches without user intervention. Finally, we demonstrate the versatility of our system, such as context adaptation, unit conversion, and sentence reordering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信