基于深度图像理解的自动Bug推断

Shengcheng Yu, Wanmin Huang, Jingui Zhang, Haitao Zheng
{"title":"基于深度图像理解的自动Bug推断","authors":"Shengcheng Yu, Wanmin Huang, Jingui Zhang, Haitao Zheng","doi":"10.1109/DSA56465.2022.00051","DOIUrl":null,"url":null,"abstract":"In mobile crowdsourced testing, crowdworkers are usually far from experts, and low-quality bug reports are submitted, in which the bug descriptions are usually poorly written. Thus, the bug descriptions are hard to read and helpless for bug inference and bug understanding. To ease the understanding of bug scenarios, we present a novel method called BIU (Bug Inference via Image Understanding), which employs image understanding techniques to help crowdworkers automatically infer bugs and generate bug descriptions using bug screenshots. In this way, the burden of crowdworkers will be lowered and their working efficiency and report quality will be greatly improved. According to our preliminary experiments, the accuracy of BIU can reach up to 90%. The demonstration video can be found at: https://youtu.be/ZBOIqtdRFaU.","PeriodicalId":208148,"journal":{"name":"2022 9th International Conference on Dependable Systems and Their Applications (DSA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Bug Inference via Deep Image Understanding\",\"authors\":\"Shengcheng Yu, Wanmin Huang, Jingui Zhang, Haitao Zheng\",\"doi\":\"10.1109/DSA56465.2022.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In mobile crowdsourced testing, crowdworkers are usually far from experts, and low-quality bug reports are submitted, in which the bug descriptions are usually poorly written. Thus, the bug descriptions are hard to read and helpless for bug inference and bug understanding. To ease the understanding of bug scenarios, we present a novel method called BIU (Bug Inference via Image Understanding), which employs image understanding techniques to help crowdworkers automatically infer bugs and generate bug descriptions using bug screenshots. In this way, the burden of crowdworkers will be lowered and their working efficiency and report quality will be greatly improved. According to our preliminary experiments, the accuracy of BIU can reach up to 90%. The demonstration video can be found at: https://youtu.be/ZBOIqtdRFaU.\",\"PeriodicalId\":208148,\"journal\":{\"name\":\"2022 9th International Conference on Dependable Systems and Their Applications (DSA)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Dependable Systems and Their Applications (DSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSA56465.2022.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Dependable Systems and Their Applications (DSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSA56465.2022.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在移动众包测试中,众包工作者通常与专家相距甚远,提交的bug报告质量很低,其中的bug描述通常写得很差。因此,错误描述很难阅读,也无法进行错误推理和错误理解。为了简化对bug场景的理解,我们提出了一种名为BIU (bug Inference via Image understanding)的新方法,该方法使用图像理解技术来帮助众包工作者自动推断bug并使用bug截图生成bug描述。这样可以减轻众包工作者的负担,大大提高他们的工作效率和报告质量。根据我们的初步实验,BIU的准确率可以达到90%。该演示视频可在https://youtu.be/ZBOIqtdRFaU上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Bug Inference via Deep Image Understanding
In mobile crowdsourced testing, crowdworkers are usually far from experts, and low-quality bug reports are submitted, in which the bug descriptions are usually poorly written. Thus, the bug descriptions are hard to read and helpless for bug inference and bug understanding. To ease the understanding of bug scenarios, we present a novel method called BIU (Bug Inference via Image Understanding), which employs image understanding techniques to help crowdworkers automatically infer bugs and generate bug descriptions using bug screenshots. In this way, the burden of crowdworkers will be lowered and their working efficiency and report quality will be greatly improved. According to our preliminary experiments, the accuracy of BIU can reach up to 90%. The demonstration video can be found at: https://youtu.be/ZBOIqtdRFaU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信