二值化snn:基于二值化的高效抗错峰值神经网络

M. Wei, Mikail Yayla, S. Ho, Jian-Jia Chen, Chia-Lin Yang, H. Amrouch
{"title":"二值化snn:基于二值化的高效抗错峰值神经网络","authors":"M. Wei, Mikail Yayla, S. Ho, Jian-Jia Chen, Chia-Lin Yang, H. Amrouch","doi":"10.1109/ICCAD51958.2021.9643463","DOIUrl":null,"url":null,"abstract":"Spiking Neural Networks (SNNs) are considered the third generation of NNs and can reach similar accuracy as conventional deep NNs, but with a considerable improvement in efficiency. However, to achieve high accuracy, state-of-the-art SNNs employ stochastic spike coding of the inputs, requiring multiple cycles of computation. Because of this and due to the nature of analog computing, it is required to accumulate and hold the charges of multiple cycles, necessitating a large membrane capacitor. This results in high energy, long latency, and expensive area costs, constituting one of the major bottlenecks in analog SNN implementations. Membrane capacitor size determines the precision of the firing time. Hence reducing the capacitor size considerably degrades the inference accuracy. To alleviate this, we focus on bridging the gap between binarized NNs (BNNs) and SNNs. BNNs are rapidly emerging as an attractive alternative for NNs due to their high efficiency and error tolerance. In this work, we evaluate the impact of deploying error-resilient BNNs, i.e. BNNs that have been proactively trained in the presence of errors, on analog implementation of SNNs. We show that for BNNs, the capacitor size and latency can be reduced significantly compared to state-of-the-art SNNs, which employ multi-bit models. Our experiments demonstrate that when error-resilient BNNs are deployed on analog-based SNN accelerator, the size of the membrane capacitor is reduced by 50%, the inference latency is decreased by two orders of magnitude, and energy is reduced by 57% compared to the baseline 4-bit SNN implementation, under minimal accuracy cost.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Binarized SNNs: Efficient and Error-Resilient Spiking Neural Networks through Binarization\",\"authors\":\"M. Wei, Mikail Yayla, S. Ho, Jian-Jia Chen, Chia-Lin Yang, H. Amrouch\",\"doi\":\"10.1109/ICCAD51958.2021.9643463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking Neural Networks (SNNs) are considered the third generation of NNs and can reach similar accuracy as conventional deep NNs, but with a considerable improvement in efficiency. However, to achieve high accuracy, state-of-the-art SNNs employ stochastic spike coding of the inputs, requiring multiple cycles of computation. Because of this and due to the nature of analog computing, it is required to accumulate and hold the charges of multiple cycles, necessitating a large membrane capacitor. This results in high energy, long latency, and expensive area costs, constituting one of the major bottlenecks in analog SNN implementations. Membrane capacitor size determines the precision of the firing time. Hence reducing the capacitor size considerably degrades the inference accuracy. To alleviate this, we focus on bridging the gap between binarized NNs (BNNs) and SNNs. BNNs are rapidly emerging as an attractive alternative for NNs due to their high efficiency and error tolerance. In this work, we evaluate the impact of deploying error-resilient BNNs, i.e. BNNs that have been proactively trained in the presence of errors, on analog implementation of SNNs. We show that for BNNs, the capacitor size and latency can be reduced significantly compared to state-of-the-art SNNs, which employ multi-bit models. Our experiments demonstrate that when error-resilient BNNs are deployed on analog-based SNN accelerator, the size of the membrane capacitor is reduced by 50%, the inference latency is decreased by two orders of magnitude, and energy is reduced by 57% compared to the baseline 4-bit SNN implementation, under minimal accuracy cost.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

脉冲神经网络(SNNs)被认为是第三代神经网络,它可以达到与传统深度神经网络相似的精度,但在效率上有很大的提高。然而,为了实现高精度,最先进的snn采用输入的随机尖峰编码,需要多个计算周期。由于这一点以及模拟计算的性质,需要积累和保持多个周期的电荷,这就需要一个大的膜电容器。这导致高能量、长延迟和昂贵的区域成本,成为模拟SNN实现的主要瓶颈之一。膜电容器的尺寸决定了烧制时间的精度。因此,减小电容器尺寸大大降低了推理精度。为了缓解这一问题,我们专注于弥合二值化神经网络(bnn)和snn之间的差距。由于其高效率和容错性,神经网络正迅速成为神经网络的一个有吸引力的替代品。在这项工作中,我们评估了部署错误弹性bnn(即在存在错误的情况下主动训练的bnn)对snn模拟实现的影响。我们表明,与采用多比特模型的最先进snn相比,bnn的电容器尺寸和延迟可以显着减小。我们的实验表明,当错误弹性bnn部署在基于模拟的SNN加速器上时,与基线4位SNN实现相比,膜电容器的尺寸减少了50%,推理延迟减少了两个数量级,能量减少了57%,且精度成本最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binarized SNNs: Efficient and Error-Resilient Spiking Neural Networks through Binarization
Spiking Neural Networks (SNNs) are considered the third generation of NNs and can reach similar accuracy as conventional deep NNs, but with a considerable improvement in efficiency. However, to achieve high accuracy, state-of-the-art SNNs employ stochastic spike coding of the inputs, requiring multiple cycles of computation. Because of this and due to the nature of analog computing, it is required to accumulate and hold the charges of multiple cycles, necessitating a large membrane capacitor. This results in high energy, long latency, and expensive area costs, constituting one of the major bottlenecks in analog SNN implementations. Membrane capacitor size determines the precision of the firing time. Hence reducing the capacitor size considerably degrades the inference accuracy. To alleviate this, we focus on bridging the gap between binarized NNs (BNNs) and SNNs. BNNs are rapidly emerging as an attractive alternative for NNs due to their high efficiency and error tolerance. In this work, we evaluate the impact of deploying error-resilient BNNs, i.e. BNNs that have been proactively trained in the presence of errors, on analog implementation of SNNs. We show that for BNNs, the capacitor size and latency can be reduced significantly compared to state-of-the-art SNNs, which employ multi-bit models. Our experiments demonstrate that when error-resilient BNNs are deployed on analog-based SNN accelerator, the size of the membrane capacitor is reduced by 50%, the inference latency is decreased by two orders of magnitude, and energy is reduced by 57% compared to the baseline 4-bit SNN implementation, under minimal accuracy cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信