滋扰标签监督:免费标签的鲁棒性改进

Xinyue Wei, Weichao Qiu, Yi Zhang, Zihao Xiao, A. Yuille
{"title":"滋扰标签监督:免费标签的鲁棒性改进","authors":"Xinyue Wei, Weichao Qiu, Yi Zhang, Zihao Xiao, A. Yuille","doi":"10.1109/ICCVW54120.2021.00179","DOIUrl":null,"url":null,"abstract":"In this paper, we present a Nuisance-label Supervision (NLS) module, which can make models more robust to nuisance factor variations. Nuisance factors are those irrelevant to a task, and an ideal model should be invariant to them. For example, an activity recognition model should perform consistently regardless of the change of clothes and background. But our experiments show existing models are far from this capability. So we explicitly supervise a model with nuisance labels to make extracted features less dependent on nuisance factors. Although the values of nuisance factors are rarely annotated, we demonstrate that besides existing annotations, nuisance labels can be acquired freely from data augmentation and synthetic data. Experiments show consistent improvement in robustness towards image corruption and appearance change in action recognition.","PeriodicalId":226794,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuisance-Label Supervision: Robustness Improvement by Free Labels\",\"authors\":\"Xinyue Wei, Weichao Qiu, Yi Zhang, Zihao Xiao, A. Yuille\",\"doi\":\"10.1109/ICCVW54120.2021.00179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a Nuisance-label Supervision (NLS) module, which can make models more robust to nuisance factor variations. Nuisance factors are those irrelevant to a task, and an ideal model should be invariant to them. For example, an activity recognition model should perform consistently regardless of the change of clothes and background. But our experiments show existing models are far from this capability. So we explicitly supervise a model with nuisance labels to make extracted features less dependent on nuisance factors. Although the values of nuisance factors are rarely annotated, we demonstrate that besides existing annotations, nuisance labels can be acquired freely from data augmentation and synthetic data. Experiments show consistent improvement in robustness towards image corruption and appearance change in action recognition.\",\"PeriodicalId\":226794,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCVW54120.2021.00179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCVW54120.2021.00179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个滋扰标签监督(NLS)模块,它可以使模型对滋扰因子的变化具有更强的鲁棒性。讨厌的因素是那些与任务无关的因素,理想的模型应该对它们是不变的。例如,无论衣服和背景如何变化,活动识别模型都应该始终如一地执行。但我们的实验表明,现有的模型远没有达到这种能力。因此,我们显式地监督带有滋扰标签的模型,以使提取的特征较少依赖于滋扰因素。虽然讨厌因子的值很少被标注,但我们证明了除了现有的标注之外,可以从数据增强和合成数据中自由获取讨厌标签。实验表明,在动作识别中,对图像损坏和外观变化的鲁棒性有了持续的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuisance-Label Supervision: Robustness Improvement by Free Labels
In this paper, we present a Nuisance-label Supervision (NLS) module, which can make models more robust to nuisance factor variations. Nuisance factors are those irrelevant to a task, and an ideal model should be invariant to them. For example, an activity recognition model should perform consistently regardless of the change of clothes and background. But our experiments show existing models are far from this capability. So we explicitly supervise a model with nuisance labels to make extracted features less dependent on nuisance factors. Although the values of nuisance factors are rarely annotated, we demonstrate that besides existing annotations, nuisance labels can be acquired freely from data augmentation and synthetic data. Experiments show consistent improvement in robustness towards image corruption and appearance change in action recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信