支持能源系统弹性决策的超级计算机工程

I. Bychkov, A. Feoktistov, S. Gorsky, A. Edelev, I. Sidorov, R. Kostromin, E. Fereferov, R. Fedorov
{"title":"支持能源系统弹性决策的超级计算机工程","authors":"I. Bychkov, A. Feoktistov, S. Gorsky, A. Edelev, I. Sidorov, R. Kostromin, E. Fereferov, R. Fedorov","doi":"10.1109/AICT50176.2020.9368859","DOIUrl":null,"url":null,"abstract":"We propose a new approach to creating a subject-oriented distributed computing environment. Such an environment is used to support decision-making in solving relevant problems of ensuring energy systems resilience. The proposed approach is based on the idea of advancing and integrating the following important capabilities in supercomputer engineering: continuous integration, delivery, and deployment of the system and applied software, high-performance computing in heterogeneous environments, multi-agent intelligent computation planning and resource allocation, big data processing and geo-information servicing for subject information, including weakly structured data, and decision-making support. This combination of capabilities and their advancing are unique to the subject domain under consideration, which is related to combinatorial studying critical objects of energy systems. Evaluation of decision-making alternatives is carrying out through applying combinatorial modeling and multi-criteria selection rules. The Orlando Tools framework is used as the basis for an integrated software environment. It implements a flexible modular approach to the development of scientific applications (distributed applied software packages).","PeriodicalId":136491,"journal":{"name":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Supercomputer Engineering for Supporting Decision-making on Energy Systems Resilience\",\"authors\":\"I. Bychkov, A. Feoktistov, S. Gorsky, A. Edelev, I. Sidorov, R. Kostromin, E. Fereferov, R. Fedorov\",\"doi\":\"10.1109/AICT50176.2020.9368859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new approach to creating a subject-oriented distributed computing environment. Such an environment is used to support decision-making in solving relevant problems of ensuring energy systems resilience. The proposed approach is based on the idea of advancing and integrating the following important capabilities in supercomputer engineering: continuous integration, delivery, and deployment of the system and applied software, high-performance computing in heterogeneous environments, multi-agent intelligent computation planning and resource allocation, big data processing and geo-information servicing for subject information, including weakly structured data, and decision-making support. This combination of capabilities and their advancing are unique to the subject domain under consideration, which is related to combinatorial studying critical objects of energy systems. Evaluation of decision-making alternatives is carrying out through applying combinatorial modeling and multi-criteria selection rules. The Orlando Tools framework is used as the basis for an integrated software environment. It implements a flexible modular approach to the development of scientific applications (distributed applied software packages).\",\"PeriodicalId\":136491,\"journal\":{\"name\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICT50176.2020.9368859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT50176.2020.9368859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种创建面向主题的分布式计算环境的新方法。这样的环境被用来支持解决相关问题的决策,以确保能源系统的弹性。提出的方法基于推进和集成超级计算机工程中以下重要能力的思想:系统和应用软件的持续集成、交付和部署,异构环境下的高性能计算,多智能体智能计算规划和资源分配,大数据处理和主题信息(包括弱结构数据)的地理信息服务,以及决策支持。这种能力的组合及其推进是所考虑的学科领域所特有的,这与能源系统关键对象的组合研究有关。运用组合建模和多准则选择规则对决策方案进行评价。Orlando Tools框架被用作集成软件环境的基础。它实现了一种灵活的模块化方法来开发科学应用程序(分布式应用软件包)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercomputer Engineering for Supporting Decision-making on Energy Systems Resilience
We propose a new approach to creating a subject-oriented distributed computing environment. Such an environment is used to support decision-making in solving relevant problems of ensuring energy systems resilience. The proposed approach is based on the idea of advancing and integrating the following important capabilities in supercomputer engineering: continuous integration, delivery, and deployment of the system and applied software, high-performance computing in heterogeneous environments, multi-agent intelligent computation planning and resource allocation, big data processing and geo-information servicing for subject information, including weakly structured data, and decision-making support. This combination of capabilities and their advancing are unique to the subject domain under consideration, which is related to combinatorial studying critical objects of energy systems. Evaluation of decision-making alternatives is carrying out through applying combinatorial modeling and multi-criteria selection rules. The Orlando Tools framework is used as the basis for an integrated software environment. It implements a flexible modular approach to the development of scientific applications (distributed applied software packages).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信