在变形区形成冲击脉冲的可视化过程

Андрей Викторович Киричек, A. Kirichek, Сергей Баринов, S. Barinov, Мария Рыжкова, M. Ryzhkova, Александр Егорович Яшин, A. Yashin
{"title":"在变形区形成冲击脉冲的可视化过程","authors":"Андрей Викторович Киричек, A. Kirichek, Сергей Баринов, S. Barinov, Мария Рыжкова, M. Ryzhkova, Александр Егорович Яшин, A. Yashin","doi":"10.30987/graphicon-2019-2-265-267","DOIUrl":null,"url":null,"abstract":"The article raises the problem of visualizing fleeting processes occurring as a result of wave strain hardening (WSH). The features of this method are unique capabilities for controlling the parameters of the shock pulse. This allows, in contrast to other dynamic methods of the surface plastic deformation, forming the desired microhardness distribution diagram in the surface layer at a depth of 6- 8 mm, while ensuring the required uniformity of hardening. The need to visualize this method is explained by the complexity of the analytical description of the ongoing wave processes in the shock system and the loading medium. Developing a visualization technique based on a model of the process of wave strain hardening consists of several stages. The stages include setting the initial and boundary conditions of the simulated elements, their physical-mechanical properties, loading conditions, the type of the mesh, the process conditions. The created model allows you to visually track the shock pulse movement after the striker hits the statically pressed waveguide against the loading medium, and at the same time to see the generation of the reflected deformation wave (the tail of the shock pulse) and its effect on the shock system elements and the loading medium. The results will make it possible to develop shock systems with the highest efficiency.","PeriodicalId":409819,"journal":{"name":"GraphiCon'2019 Proceedings. Volume 2","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Visualizing the Process of Forming a Shock Pulse in the Deformation Zone\",\"authors\":\"Андрей Викторович Киричек, A. Kirichek, Сергей Баринов, S. Barinov, Мария Рыжкова, M. Ryzhkova, Александр Егорович Яшин, A. Yashin\",\"doi\":\"10.30987/graphicon-2019-2-265-267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article raises the problem of visualizing fleeting processes occurring as a result of wave strain hardening (WSH). The features of this method are unique capabilities for controlling the parameters of the shock pulse. This allows, in contrast to other dynamic methods of the surface plastic deformation, forming the desired microhardness distribution diagram in the surface layer at a depth of 6- 8 mm, while ensuring the required uniformity of hardening. The need to visualize this method is explained by the complexity of the analytical description of the ongoing wave processes in the shock system and the loading medium. Developing a visualization technique based on a model of the process of wave strain hardening consists of several stages. The stages include setting the initial and boundary conditions of the simulated elements, their physical-mechanical properties, loading conditions, the type of the mesh, the process conditions. The created model allows you to visually track the shock pulse movement after the striker hits the statically pressed waveguide against the loading medium, and at the same time to see the generation of the reflected deformation wave (the tail of the shock pulse) and its effect on the shock system elements and the loading medium. The results will make it possible to develop shock systems with the highest efficiency.\",\"PeriodicalId\":409819,\"journal\":{\"name\":\"GraphiCon'2019 Proceedings. Volume 2\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GraphiCon'2019 Proceedings. Volume 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30987/graphicon-2019-2-265-267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GraphiCon'2019 Proceedings. Volume 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30987/graphicon-2019-2-265-267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出的问题,可视化的稍纵即逝的过程发生的波应变硬化(WSH)的结果。该方法的特点是具有控制冲击脉冲参数的独特能力。与其他表面塑性变形的动态方法相比,这允许在表层6- 8mm深度处形成所需的显微硬度分布图,同时确保所需的硬化均匀性。对冲击系统和加载介质中正在进行的波动过程的分析描述的复杂性解释了将这种方法可视化的必要性。基于波应变硬化过程模型的可视化技术的开发分为几个阶段。这些阶段包括设置模拟元件的初始条件和边界条件、其物理力学性能、加载条件、网格类型、工艺条件。创建的模型允许您直观地跟踪冲击器撞击静压波导后的冲击脉冲运动,同时看到反射变形波(冲击脉冲的尾部)的产生及其对冲击系统元件和加载介质的影响。研究结果将使开发具有最高效率的冲击系统成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing the Process of Forming a Shock Pulse in the Deformation Zone
The article raises the problem of visualizing fleeting processes occurring as a result of wave strain hardening (WSH). The features of this method are unique capabilities for controlling the parameters of the shock pulse. This allows, in contrast to other dynamic methods of the surface plastic deformation, forming the desired microhardness distribution diagram in the surface layer at a depth of 6- 8 mm, while ensuring the required uniformity of hardening. The need to visualize this method is explained by the complexity of the analytical description of the ongoing wave processes in the shock system and the loading medium. Developing a visualization technique based on a model of the process of wave strain hardening consists of several stages. The stages include setting the initial and boundary conditions of the simulated elements, their physical-mechanical properties, loading conditions, the type of the mesh, the process conditions. The created model allows you to visually track the shock pulse movement after the striker hits the statically pressed waveguide against the loading medium, and at the same time to see the generation of the reflected deformation wave (the tail of the shock pulse) and its effect on the shock system elements and the loading medium. The results will make it possible to develop shock systems with the highest efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信