基于自适应进化粒子滤波的目标跟踪与遮挡处理

Zhuohua Duan, Zixing Cai
{"title":"基于自适应进化粒子滤波的目标跟踪与遮挡处理","authors":"Zhuohua Duan, Zixing Cai","doi":"10.1109/ICNC.2009.623","DOIUrl":null,"url":null,"abstract":"Fast and robust object tracking with occlusion handling is a challenging task. Particle filtering has proven very successful for non-linear and non-Gaussian estimation problems. The paper presents a method for occlusion detection for object tracking with adaptive evolutionary particle filter. Firstly, object occlusion is detected with normalization factor. Secondly, adaptive transition function is employed to recovery from occlusion. Thirdly, an adaptive evolutionary method is employed to handle particle degeneracy problem. Experimental results show the presented method can track object fast and accurate in occlusded situation.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptive Evolutionary Particle Filter Based Object Tracking with Occlusion Handling\",\"authors\":\"Zhuohua Duan, Zixing Cai\",\"doi\":\"10.1109/ICNC.2009.623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and robust object tracking with occlusion handling is a challenging task. Particle filtering has proven very successful for non-linear and non-Gaussian estimation problems. The paper presents a method for occlusion detection for object tracking with adaptive evolutionary particle filter. Firstly, object occlusion is detected with normalization factor. Secondly, adaptive transition function is employed to recovery from occlusion. Thirdly, an adaptive evolutionary method is employed to handle particle degeneracy problem. Experimental results show the presented method can track object fast and accurate in occlusded situation.\",\"PeriodicalId\":235382,\"journal\":{\"name\":\"2009 Fifth International Conference on Natural Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Fifth International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2009.623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

快速和健壮的对象跟踪与遮挡处理是一个具有挑战性的任务。粒子滤波已被证明是非常成功的非线性和非高斯估计问题。提出了一种基于自适应进化粒子滤波的目标跟踪遮挡检测方法。首先,利用归一化因子检测目标遮挡;其次,采用自适应过渡函数进行遮挡恢复。第三,采用自适应进化方法处理粒子退化问题。实验结果表明,该方法能在遮挡情况下快速准确地跟踪目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Evolutionary Particle Filter Based Object Tracking with Occlusion Handling
Fast and robust object tracking with occlusion handling is a challenging task. Particle filtering has proven very successful for non-linear and non-Gaussian estimation problems. The paper presents a method for occlusion detection for object tracking with adaptive evolutionary particle filter. Firstly, object occlusion is detected with normalization factor. Secondly, adaptive transition function is employed to recovery from occlusion. Thirdly, an adaptive evolutionary method is employed to handle particle degeneracy problem. Experimental results show the presented method can track object fast and accurate in occlusded situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信