用于指令粒度监控的可编程滤波加速器

Sotiria Fytraki, Evangelos Vlachos, Yusuf Onur Koçberber, B. Falsafi, Boris Grot
{"title":"用于指令粒度监控的可编程滤波加速器","authors":"Sotiria Fytraki, Evangelos Vlachos, Yusuf Onur Koçberber, B. Falsafi, Boris Grot","doi":"10.1109/HPCA.2014.6835922","DOIUrl":null,"url":null,"abstract":"Instruction-grain monitoring is a powerful approach that enables a wide spectrum of bug-finding tools. As existing software approaches incur prohibitive runtime overhead, researchers have focused on hardware support for instruction-grain monitoring. A recurring theme in recent work is the use of hardware-assisted filtering so as to elide costly software analysis. This work generalizes and extends prior point solutions into a programmable filtering accelerator affording vast flexibility and at-speed event filtering. The pipelined microarchitecture of the accelerator affords a peak filtering rate of one application event per cycle, which suffices to keep up with an aggressive OoO core running the monitored application. A unique feature of the proposed design is the ability to dynamically resolve dependencies between unfilterable events and subsequent events, eliminating data-dependent stalls and maximizing accelerator's performance. Our evaluation results show a monitoring slowdown of just 1.2-1.8x across a diverse set of monitoring tools.","PeriodicalId":164587,"journal":{"name":"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"FADE: A programmable filtering accelerator for instruction-grain monitoring\",\"authors\":\"Sotiria Fytraki, Evangelos Vlachos, Yusuf Onur Koçberber, B. Falsafi, Boris Grot\",\"doi\":\"10.1109/HPCA.2014.6835922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instruction-grain monitoring is a powerful approach that enables a wide spectrum of bug-finding tools. As existing software approaches incur prohibitive runtime overhead, researchers have focused on hardware support for instruction-grain monitoring. A recurring theme in recent work is the use of hardware-assisted filtering so as to elide costly software analysis. This work generalizes and extends prior point solutions into a programmable filtering accelerator affording vast flexibility and at-speed event filtering. The pipelined microarchitecture of the accelerator affords a peak filtering rate of one application event per cycle, which suffices to keep up with an aggressive OoO core running the monitored application. A unique feature of the proposed design is the ability to dynamically resolve dependencies between unfilterable events and subsequent events, eliminating data-dependent stalls and maximizing accelerator's performance. Our evaluation results show a monitoring slowdown of just 1.2-1.8x across a diverse set of monitoring tools.\",\"PeriodicalId\":164587,\"journal\":{\"name\":\"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2014.6835922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2014.6835922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

指令粒度监视是一种强大的方法,它支持广泛的bug查找工具。由于现有的软件方法会产生令人望而却步的运行时开销,研究人员将重点放在了对指令粒度监视的硬件支持上。在最近的工作中,一个反复出现的主题是使用硬件辅助过滤,以避免昂贵的软件分析。这项工作将先前的点解决方案推广并扩展到可编程滤波加速器中,提供了巨大的灵活性和高速事件滤波。加速器的流水线微体系结构提供了每个周期一个应用程序事件的峰值过滤速率,这足以跟上运行被监视应用程序的OoO核心。所提出的设计的一个独特之处是能够动态地解决不可过滤事件和后续事件之间的依赖关系,从而消除与数据相关的停顿并最大限度地提高加速器的性能。我们的评估结果显示,在不同的监控工具集中,监控速度的减慢仅为1.2-1.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FADE: A programmable filtering accelerator for instruction-grain monitoring
Instruction-grain monitoring is a powerful approach that enables a wide spectrum of bug-finding tools. As existing software approaches incur prohibitive runtime overhead, researchers have focused on hardware support for instruction-grain monitoring. A recurring theme in recent work is the use of hardware-assisted filtering so as to elide costly software analysis. This work generalizes and extends prior point solutions into a programmable filtering accelerator affording vast flexibility and at-speed event filtering. The pipelined microarchitecture of the accelerator affords a peak filtering rate of one application event per cycle, which suffices to keep up with an aggressive OoO core running the monitored application. A unique feature of the proposed design is the ability to dynamically resolve dependencies between unfilterable events and subsequent events, eliminating data-dependent stalls and maximizing accelerator's performance. Our evaluation results show a monitoring slowdown of just 1.2-1.8x across a diverse set of monitoring tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信