用于非线性系统调节的径向基函数神经网络

I.N. Kostanic, F. M. Ham
{"title":"用于非线性系统调节的径向基函数神经网络","authors":"I.N. Kostanic, F. M. Ham","doi":"10.1109/SECON.1996.510101","DOIUrl":null,"url":null,"abstract":"A large class of nonlinear discrete systems with accessible states can be controlled through feedback linearization. This paper develops a practical algorithm for state feedback control design using radial basis function neural networks (RBFNN). Linear least-squares is coupled with a Gram-Schmidt orthogonalization procedure to perform size reduction of the neural networks. An example of regulating a nonlinear plant is included to illustrate the effectiveness of the proposed algorithm.","PeriodicalId":338029,"journal":{"name":"Proceedings of SOUTHEASTCON '96","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial basis function neural network for regulation of nonlinear systems\",\"authors\":\"I.N. Kostanic, F. M. Ham\",\"doi\":\"10.1109/SECON.1996.510101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A large class of nonlinear discrete systems with accessible states can be controlled through feedback linearization. This paper develops a practical algorithm for state feedback control design using radial basis function neural networks (RBFNN). Linear least-squares is coupled with a Gram-Schmidt orthogonalization procedure to perform size reduction of the neural networks. An example of regulating a nonlinear plant is included to illustrate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":338029,\"journal\":{\"name\":\"Proceedings of SOUTHEASTCON '96\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SOUTHEASTCON '96\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1996.510101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1996.510101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一类具有可达状态的非线性离散系统可以通过反馈线性化进行控制。本文提出了一种实用的径向基函数神经网络(RBFNN)状态反馈控制设计算法。将线性最小二乘与Gram-Schmidt正交化相结合,对神经网络进行尺寸缩减。最后以非线性对象的控制为例说明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial basis function neural network for regulation of nonlinear systems
A large class of nonlinear discrete systems with accessible states can be controlled through feedback linearization. This paper develops a practical algorithm for state feedback control design using radial basis function neural networks (RBFNN). Linear least-squares is coupled with a Gram-Schmidt orthogonalization procedure to perform size reduction of the neural networks. An example of regulating a nonlinear plant is included to illustrate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信