用自适应迭代法进行距离场变换

Fan Chen, Ye Zhao
{"title":"用自适应迭代法进行距离场变换","authors":"Fan Chen, Ye Zhao","doi":"10.1109/SMI.2009.5170171","DOIUrl":null,"url":null,"abstract":"We propose a novel distance field transform method based on an iterative method adaptively performed on an evolving active band. Our method utilizes a narrow band to store active grid points being computed. Unlike the conventional fast marching method, we do not maintain a priority queue, and instead, perform iterative computing inside the band. This new algorithm alleviates the programming complexity and the data-structure (e.g. a heap) maintenance overhead, and leads to a parallel amenable computational process. During the active band propagating from a starting boundary layer, each grid point stays in the band for a lifespan time, which is determined by analyzing the particular geometric property of the grid structure. In this way, we find the Face-Centered Cubic (FCC) grid is a good 3D structure for distance transform.We further develop a multiple-segment method for the band propagation, achieving the computational complexity of O(m · N) with a segment-related constant m.","PeriodicalId":237863,"journal":{"name":"2009 IEEE International Conference on Shape Modeling and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Distance field transform with an adaptive iteration method\",\"authors\":\"Fan Chen, Ye Zhao\",\"doi\":\"10.1109/SMI.2009.5170171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel distance field transform method based on an iterative method adaptively performed on an evolving active band. Our method utilizes a narrow band to store active grid points being computed. Unlike the conventional fast marching method, we do not maintain a priority queue, and instead, perform iterative computing inside the band. This new algorithm alleviates the programming complexity and the data-structure (e.g. a heap) maintenance overhead, and leads to a parallel amenable computational process. During the active band propagating from a starting boundary layer, each grid point stays in the band for a lifespan time, which is determined by analyzing the particular geometric property of the grid structure. In this way, we find the Face-Centered Cubic (FCC) grid is a good 3D structure for distance transform.We further develop a multiple-segment method for the band propagation, achieving the computational complexity of O(m · N) with a segment-related constant m.\",\"PeriodicalId\":237863,\"journal\":{\"name\":\"2009 IEEE International Conference on Shape Modeling and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Shape Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMI.2009.5170171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Shape Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2009.5170171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于迭代法的距离场变换方法,该方法对不断变化的有源波段进行自适应变换。我们的方法利用窄带来存储正在计算的活动网格点。与传统的快速行进方法不同,我们不维护优先级队列,而是在频带内进行迭代计算。该算法降低了编程复杂度和数据结构(如堆)维护开销,实现了并行化的计算过程。在从起始边界层传播的有源带中,每个网格点在带中停留一段寿命时间,这是通过分析网格结构的特定几何特性来确定的。通过这种方法,我们发现面心立方网格(FCC)是一种很好的距离变换三维结构。我们进一步开发了一种多段带传播方法,在与段相关的常数m下实现了O(m·N)的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance field transform with an adaptive iteration method
We propose a novel distance field transform method based on an iterative method adaptively performed on an evolving active band. Our method utilizes a narrow band to store active grid points being computed. Unlike the conventional fast marching method, we do not maintain a priority queue, and instead, perform iterative computing inside the band. This new algorithm alleviates the programming complexity and the data-structure (e.g. a heap) maintenance overhead, and leads to a parallel amenable computational process. During the active band propagating from a starting boundary layer, each grid point stays in the band for a lifespan time, which is determined by analyzing the particular geometric property of the grid structure. In this way, we find the Face-Centered Cubic (FCC) grid is a good 3D structure for distance transform.We further develop a multiple-segment method for the band propagation, achieving the computational complexity of O(m · N) with a segment-related constant m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信