公平对手的异步可计算性定理

P. Kuznetsov, Thibault Rieutord, Yuan He
{"title":"公平对手的异步可计算性定理","authors":"P. Kuznetsov, Thibault Rieutord, Yuan He","doi":"10.1145/3212734.3212765","DOIUrl":null,"url":null,"abstract":"This paper proposes a simple topological characterization of a large class of fair adversarial models via affine tasks: sub-complexes of the second iteration of the standard chromatic subdivision. We show that the task computability of a model in the class is precisely captured by iterations of the corresponding affine task. Fair adversaries include, but are not restricted to, the models of wait-freedom, t-resilience, and k-concurrency. Our results generalize and improve all previously derived topological characterizations of the ability of a model to solve distributed tasks.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"An Asynchronous Computability Theorem for Fair Adversaries\",\"authors\":\"P. Kuznetsov, Thibault Rieutord, Yuan He\",\"doi\":\"10.1145/3212734.3212765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a simple topological characterization of a large class of fair adversarial models via affine tasks: sub-complexes of the second iteration of the standard chromatic subdivision. We show that the task computability of a model in the class is precisely captured by iterations of the corresponding affine task. Fair adversaries include, but are not restricted to, the models of wait-freedom, t-resilience, and k-concurrency. Our results generalize and improve all previously derived topological characterizations of the ability of a model to solve distributed tasks.\",\"PeriodicalId\":198284,\"journal\":{\"name\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3212734.3212765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文通过仿射任务提出了一类公平对抗模型的简单拓扑表征:标准色细分的第二次迭代的子复合体。我们证明了类中模型的任务可计算性是通过相应仿射任务的迭代精确捕获的。公平的对手包括(但不限于)等待自由模型、t-弹性模型和k-并发模型。我们的结果概括和改进了所有先前导出的模型解决分布式任务能力的拓扑特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Asynchronous Computability Theorem for Fair Adversaries
This paper proposes a simple topological characterization of a large class of fair adversarial models via affine tasks: sub-complexes of the second iteration of the standard chromatic subdivision. We show that the task computability of a model in the class is precisely captured by iterations of the corresponding affine task. Fair adversaries include, but are not restricted to, the models of wait-freedom, t-resilience, and k-concurrency. Our results generalize and improve all previously derived topological characterizations of the ability of a model to solve distributed tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信