具有量子化状态测量的线性系统主动学习控制器的设计

Xiangbo Feng, K. Loparo
{"title":"具有量子化状态测量的线性系统主动学习控制器的设计","authors":"Xiangbo Feng, K. Loparo","doi":"10.1109/ACC.1992.4175583","DOIUrl":null,"url":null,"abstract":"In this paper, we study the effect of state (or output) quantization in scalar discrete-time linear control systems by regarding the quantized state as a partial observation of the true state rather than an approximation. With this point of view, the quantized system is analyzed as a partially observed stochastic system and the problem of optimal state information gathering-from the history of the quantized output is investigated. It is shown that this problem is equivalent to an optimal control problem for a controlled Markov chain.","PeriodicalId":297258,"journal":{"name":"1992 American Control Conference","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Design of Active Learning Controllers for Linear Systems with Quantized State Measurements\",\"authors\":\"Xiangbo Feng, K. Loparo\",\"doi\":\"10.1109/ACC.1992.4175583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the effect of state (or output) quantization in scalar discrete-time linear control systems by regarding the quantized state as a partial observation of the true state rather than an approximation. With this point of view, the quantized system is analyzed as a partially observed stochastic system and the problem of optimal state information gathering-from the history of the quantized output is investigated. It is shown that this problem is equivalent to an optimal control problem for a controlled Markov chain.\",\"PeriodicalId\":297258,\"journal\":{\"name\":\"1992 American Control Conference\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.1992.4175583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.1992.4175583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们研究了状态(或输出)量化在标量离散时间线性控制系统中的影响,将量化状态视为真实状态的部分观测而不是近似。从这一观点出发,将量子化系统作为部分观测随机系统进行分析,并研究了从量子化输出历史中获取最优状态信息的问题。结果表明,该问题等价于一个受控马尔可夫链的最优控制问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Design of Active Learning Controllers for Linear Systems with Quantized State Measurements
In this paper, we study the effect of state (or output) quantization in scalar discrete-time linear control systems by regarding the quantized state as a partial observation of the true state rather than an approximation. With this point of view, the quantized system is analyzed as a partially observed stochastic system and the problem of optimal state information gathering-from the history of the quantized output is investigated. It is shown that this problem is equivalent to an optimal control problem for a controlled Markov chain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信