亚当

Shiyi Cao, Yuanning Gao, Xiaofeng Gao, Guihai Chen
{"title":"亚当","authors":"Shiyi Cao, Yuanning Gao, Xiaofeng Gao, Guihai Chen","doi":"10.1145/3337821.3337822","DOIUrl":null,"url":null,"abstract":"Distributed metadata management, administrating the distribution of metadata nodes on different metadata servers (MDS's), can substantially improve overall performance of large-scale distributed storage systems if well designed. A major difficulty confronting many metadata management schemes is the trade-off between two conflicting aspects: system load balance and metadata locality preservation. It becomes even more challenging as file access pattern inevitably varies with time. However, existing works dynamically reallocate nodes to different servers adopting history-based coarse-grained methods, failing to make timely and efficient update on distribution of nodes. In this paper, we propose an adaptive fine-grained metadata management scheme, AdaM, leveraging Deep Reinforcement Learning, to address the trade-off dilemma against time-varying access pattern. At each time step, AdaM collects environmental \"states\" including access pattern, the structure of namespace tree and current distribution of nodes on MDS's. Then an actor-critic network is trained to reallocate hot metadata nodes to different servers according to the observed \"states\". Adaptive to varying access pattern, AdaM can automatically migrate hot metadata nodes among servers to keep load balancing while maintaining metadata locality. We test AdaM on real-world data traces. Experimental results demonstrate the superiority of our proposed method over other schemes.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AdaM\",\"authors\":\"Shiyi Cao, Yuanning Gao, Xiaofeng Gao, Guihai Chen\",\"doi\":\"10.1145/3337821.3337822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed metadata management, administrating the distribution of metadata nodes on different metadata servers (MDS's), can substantially improve overall performance of large-scale distributed storage systems if well designed. A major difficulty confronting many metadata management schemes is the trade-off between two conflicting aspects: system load balance and metadata locality preservation. It becomes even more challenging as file access pattern inevitably varies with time. However, existing works dynamically reallocate nodes to different servers adopting history-based coarse-grained methods, failing to make timely and efficient update on distribution of nodes. In this paper, we propose an adaptive fine-grained metadata management scheme, AdaM, leveraging Deep Reinforcement Learning, to address the trade-off dilemma against time-varying access pattern. At each time step, AdaM collects environmental \\\"states\\\" including access pattern, the structure of namespace tree and current distribution of nodes on MDS's. Then an actor-critic network is trained to reallocate hot metadata nodes to different servers according to the observed \\\"states\\\". Adaptive to varying access pattern, AdaM can automatically migrate hot metadata nodes among servers to keep load balancing while maintaining metadata locality. We test AdaM on real-world data traces. Experimental results demonstrate the superiority of our proposed method over other schemes.\",\"PeriodicalId\":405273,\"journal\":{\"name\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 48th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3337821.3337822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
AdaM
Distributed metadata management, administrating the distribution of metadata nodes on different metadata servers (MDS's), can substantially improve overall performance of large-scale distributed storage systems if well designed. A major difficulty confronting many metadata management schemes is the trade-off between two conflicting aspects: system load balance and metadata locality preservation. It becomes even more challenging as file access pattern inevitably varies with time. However, existing works dynamically reallocate nodes to different servers adopting history-based coarse-grained methods, failing to make timely and efficient update on distribution of nodes. In this paper, we propose an adaptive fine-grained metadata management scheme, AdaM, leveraging Deep Reinforcement Learning, to address the trade-off dilemma against time-varying access pattern. At each time step, AdaM collects environmental "states" including access pattern, the structure of namespace tree and current distribution of nodes on MDS's. Then an actor-critic network is trained to reallocate hot metadata nodes to different servers according to the observed "states". Adaptive to varying access pattern, AdaM can automatically migrate hot metadata nodes among servers to keep load balancing while maintaining metadata locality. We test AdaM on real-world data traces. Experimental results demonstrate the superiority of our proposed method over other schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信