实用的GPU程序符号竞争检查

Peng Li, Guodong Li, G. Gopalakrishnan
{"title":"实用的GPU程序符号竞争检查","authors":"Peng Li, Guodong Li, G. Gopalakrishnan","doi":"10.1109/SC.2014.20","DOIUrl":null,"url":null,"abstract":"Even the careful GPU programmer can inadvertently introduce data races while writing and optimizing code. Currently available GPU race checking methods fall short either in terms of their formal guarantees, ease of use, or practicality. Existing symbolic methods: (1) do not fully support existing CUDA kernels, (2) may require user-specified assertions or invariants, (3) often require users to guess which inputs may be safely made concrete, (4) tend to explode in complexity when the number of threads is increased, and (5) explode in the face of thread-ID based decisions, especially in a loop. We present SESA, a new tool combining Symbolic Execution and Static Analysis to analyze C++ CUDA programs that overcomes all these limitations. SESA also scales well to handle non-trivial benchmarks such as Parboil and Lonestar, and is the only tool of its class that handles such practical examples. This paper presents SESA's methodological innovations and practical results.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Practical Symbolic Race Checking of GPU Programs\",\"authors\":\"Peng Li, Guodong Li, G. Gopalakrishnan\",\"doi\":\"10.1109/SC.2014.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Even the careful GPU programmer can inadvertently introduce data races while writing and optimizing code. Currently available GPU race checking methods fall short either in terms of their formal guarantees, ease of use, or practicality. Existing symbolic methods: (1) do not fully support existing CUDA kernels, (2) may require user-specified assertions or invariants, (3) often require users to guess which inputs may be safely made concrete, (4) tend to explode in complexity when the number of threads is increased, and (5) explode in the face of thread-ID based decisions, especially in a loop. We present SESA, a new tool combining Symbolic Execution and Static Analysis to analyze C++ CUDA programs that overcomes all these limitations. SESA also scales well to handle non-trivial benchmarks such as Parboil and Lonestar, and is the only tool of its class that handles such practical examples. This paper presents SESA's methodological innovations and practical results.\",\"PeriodicalId\":275261,\"journal\":{\"name\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2014.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

即使是细心的GPU程序员也可能在编写和优化代码时无意中引入数据竞争。目前可用的GPU竞争检查方法在形式保证、易用性或实用性方面都存在不足。现有的符号方法:(1)不完全支持现有的CUDA内核,(2)可能需要用户指定的断言或不变量,(3)通常需要用户猜测哪些输入可以安全具体化,(4)当线程数量增加时,复杂性往往会爆炸,(5)面对基于线程id的决策时爆炸,特别是在循环中。我们提出了SESA,一个结合符号执行和静态分析的新工具来分析c++ CUDA程序,克服了所有这些限制。SESA还可以很好地扩展以处理Parboil和Lonestar等重要的基准测试,并且是其类中唯一处理此类实际示例的工具。本文介绍了SESA的方法创新和实践成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Symbolic Race Checking of GPU Programs
Even the careful GPU programmer can inadvertently introduce data races while writing and optimizing code. Currently available GPU race checking methods fall short either in terms of their formal guarantees, ease of use, or practicality. Existing symbolic methods: (1) do not fully support existing CUDA kernels, (2) may require user-specified assertions or invariants, (3) often require users to guess which inputs may be safely made concrete, (4) tend to explode in complexity when the number of threads is increased, and (5) explode in the face of thread-ID based decisions, especially in a loop. We present SESA, a new tool combining Symbolic Execution and Static Analysis to analyze C++ CUDA programs that overcomes all these limitations. SESA also scales well to handle non-trivial benchmarks such as Parboil and Lonestar, and is the only tool of its class that handles such practical examples. This paper presents SESA's methodological innovations and practical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信