cache - ftl:一个缓存感知的可配置混合闪存转换层

Jalil Boukhobza, Pierre Olivier, S. Rubini
{"title":"cache - ftl:一个缓存感知的可配置混合闪存转换层","authors":"Jalil Boukhobza, Pierre Olivier, S. Rubini","doi":"10.1109/PDP.2013.71","DOIUrl":null,"url":null,"abstract":"Many hybrid Flash Translation Layer (FTL) schemes have been proposed to leverage the erase-before-write and limited lifetime constraints of flash memories. Those schemes try to approach page mapping performance and flexibility while seeking block mapping memory usage. Furthermore, flash-specific cache systems were designed (1) to maximize lifetime by absorbing some erase operations, and (2) to reveal sequentiality from random write operations. Indeed, random writes represent the Achilles' heel of flash memories. Both cache systems and FTL schemes were designed independently from each other. This paper presents a scalable (in terms of mapping table size) and flexible (in terms of I/O workload support) Cache-Aware Configurable Hybrid (CACH) FTL. CACH-FTL uses a common feature of flash-specific cache systems that is flushing groups of pages from the same block. CACH-FTL partitions the flash memory space into two regions: (1) a data Block Mapped Region (BMR) collecting large groups of pages from the above cache (sequential I/Os), and (2) a small Page Mapped over-provisioning Region (PMR) which purpose is to collect/buffer small groups of pages coming from the cache (random I/Os) before moving them to BMR. CACH-FTL is flexible as it offers many configuration possibilities and can be adapted according to the I/O workload. CACH-FTL approaches the ideal page mapping FTL performance as it gives less than 15% performance difference in most cases.","PeriodicalId":202977,"journal":{"name":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"CACH-FTL: A Cache-Aware Configurable Hybrid Flash Translation Layer\",\"authors\":\"Jalil Boukhobza, Pierre Olivier, S. Rubini\",\"doi\":\"10.1109/PDP.2013.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many hybrid Flash Translation Layer (FTL) schemes have been proposed to leverage the erase-before-write and limited lifetime constraints of flash memories. Those schemes try to approach page mapping performance and flexibility while seeking block mapping memory usage. Furthermore, flash-specific cache systems were designed (1) to maximize lifetime by absorbing some erase operations, and (2) to reveal sequentiality from random write operations. Indeed, random writes represent the Achilles' heel of flash memories. Both cache systems and FTL schemes were designed independently from each other. This paper presents a scalable (in terms of mapping table size) and flexible (in terms of I/O workload support) Cache-Aware Configurable Hybrid (CACH) FTL. CACH-FTL uses a common feature of flash-specific cache systems that is flushing groups of pages from the same block. CACH-FTL partitions the flash memory space into two regions: (1) a data Block Mapped Region (BMR) collecting large groups of pages from the above cache (sequential I/Os), and (2) a small Page Mapped over-provisioning Region (PMR) which purpose is to collect/buffer small groups of pages coming from the cache (random I/Os) before moving them to BMR. CACH-FTL is flexible as it offers many configuration possibilities and can be adapted according to the I/O workload. CACH-FTL approaches the ideal page mapping FTL performance as it gives less than 15% performance difference in most cases.\",\"PeriodicalId\":202977,\"journal\":{\"name\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2013.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2013.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

许多混合闪存转换层(FTL)方案被提出,以利用闪存的写前擦除和有限的寿命限制。这些方案试图在寻求块映射内存使用的同时接近页面映射的性能和灵活性。此外,闪存专用缓存系统的设计(1)通过吸收一些擦除操作来最大化寿命,(2)揭示随机写操作的顺序。事实上,随机写入是闪存的致命弱点。缓存系统和FTL方案都是相互独立设计的。本文提出了一种可扩展(在映射表大小方面)和灵活(在I/O工作负载支持方面)缓存感知可配置混合(CACH) FTL。cache - ftl使用特定于闪存的缓存系统的一个共同特性,即从同一块中刷新页面组。cache - ftl将闪存空间划分为两个区域:(1)数据块映射区域(BMR)收集来自上述缓存的大组页面(顺序I/ o),以及(2)一个小的页面映射超额供应区域(PMR),其目的是在将它们移动到BMR之前收集/缓冲来自缓存的小组页面(随机I/ o)。cache - ftl是灵活的,因为它提供了许多配置可能性,并且可以根据I/O工作负载进行调整。cache -FTL接近理想的页面映射FTL性能,因为它在大多数情况下提供的性能差异小于15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CACH-FTL: A Cache-Aware Configurable Hybrid Flash Translation Layer
Many hybrid Flash Translation Layer (FTL) schemes have been proposed to leverage the erase-before-write and limited lifetime constraints of flash memories. Those schemes try to approach page mapping performance and flexibility while seeking block mapping memory usage. Furthermore, flash-specific cache systems were designed (1) to maximize lifetime by absorbing some erase operations, and (2) to reveal sequentiality from random write operations. Indeed, random writes represent the Achilles' heel of flash memories. Both cache systems and FTL schemes were designed independently from each other. This paper presents a scalable (in terms of mapping table size) and flexible (in terms of I/O workload support) Cache-Aware Configurable Hybrid (CACH) FTL. CACH-FTL uses a common feature of flash-specific cache systems that is flushing groups of pages from the same block. CACH-FTL partitions the flash memory space into two regions: (1) a data Block Mapped Region (BMR) collecting large groups of pages from the above cache (sequential I/Os), and (2) a small Page Mapped over-provisioning Region (PMR) which purpose is to collect/buffer small groups of pages coming from the cache (random I/Os) before moving them to BMR. CACH-FTL is flexible as it offers many configuration possibilities and can be adapted according to the I/O workload. CACH-FTL approaches the ideal page mapping FTL performance as it gives less than 15% performance difference in most cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信