非二进制GLD码及其格

N. Pietro, Nour Basha, J. Boutros
{"title":"非二进制GLD码及其格","authors":"N. Pietro, Nour Basha, J. Boutros","doi":"10.1109/ITW.2015.7133127","DOIUrl":null,"url":null,"abstract":"The recently discovered family of generalized low-density (GLD) lattices brings new mathematical challenges to coding theorists and practitioners. Given the excellent performance of integer GLD lattices in high dimensions and motivated by the simple lattice structure used for fast iterative decoding, this paper is a first attempt to analyze GLD lattices for asymptotically large dimensions. Firstly, we describe non-binary GLD codes and show their asymptotic goodness in terms of minimum Hamming distance. Secondly, we consider a GLD lattice ensemble built via Construction A from non-binary GLD codes, and analyze their goodness with respect to Poltyrev limit on the Gaussian channel. Finally, at large dimensions and using a large code alphabet, we prove that infinite GLD lattice constellations attain Poltyrev capacity limit under maximum likelihood decoding.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Non-binary GLD codes and their lattices\",\"authors\":\"N. Pietro, Nour Basha, J. Boutros\",\"doi\":\"10.1109/ITW.2015.7133127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recently discovered family of generalized low-density (GLD) lattices brings new mathematical challenges to coding theorists and practitioners. Given the excellent performance of integer GLD lattices in high dimensions and motivated by the simple lattice structure used for fast iterative decoding, this paper is a first attempt to analyze GLD lattices for asymptotically large dimensions. Firstly, we describe non-binary GLD codes and show their asymptotic goodness in terms of minimum Hamming distance. Secondly, we consider a GLD lattice ensemble built via Construction A from non-binary GLD codes, and analyze their goodness with respect to Poltyrev limit on the Gaussian channel. Finally, at large dimensions and using a large code alphabet, we prove that infinite GLD lattice constellations attain Poltyrev capacity limit under maximum likelihood decoding.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

最近发现的广义低密度格族(GLD)给编码理论家和实践者带来了新的数学挑战。考虑到整数GLD格在高维上的优异性能和用于快速迭代译码的简单格结构,本文首次尝试分析渐近大维的GLD格。首先,我们描述了非二进制GLD码,并从最小汉明距离的角度证明了它们的渐近良性。其次,我们考虑了由非二进制GLD码通过构造a构建的GLD晶格集合,并分析了它们在高斯信道上的Poltyrev极限的良度。最后,在大维度和大编码字母下,我们证明了无限GLD晶格星座在最大似然解码下达到了polytyrev容量极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-binary GLD codes and their lattices
The recently discovered family of generalized low-density (GLD) lattices brings new mathematical challenges to coding theorists and practitioners. Given the excellent performance of integer GLD lattices in high dimensions and motivated by the simple lattice structure used for fast iterative decoding, this paper is a first attempt to analyze GLD lattices for asymptotically large dimensions. Firstly, we describe non-binary GLD codes and show their asymptotic goodness in terms of minimum Hamming distance. Secondly, we consider a GLD lattice ensemble built via Construction A from non-binary GLD codes, and analyze their goodness with respect to Poltyrev limit on the Gaussian channel. Finally, at large dimensions and using a large code alphabet, we prove that infinite GLD lattice constellations attain Poltyrev capacity limit under maximum likelihood decoding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信