基于自适应细节注入的泛锐化特征金字塔网络

Yi Sun, Yuanlin Zhang, Yuan Yuan
{"title":"基于自适应细节注入的泛锐化特征金字塔网络","authors":"Yi Sun, Yuanlin Zhang, Yuan Yuan","doi":"10.1109/ICIP46576.2022.9897212","DOIUrl":null,"url":null,"abstract":"Many remarkable works have been proposed to deal with distortions problems in image fusion to date. However, the spectral distortion and the spatial distortion cannot always be well addressed at the same time. To deal with this, we propose an Adaptive Feature Pyramid Network (AFPN) to efficiently embed an Adaptive Detail Injection (ADI) module at different scales. Feature-domain injection gains are proposed in the ADI module to adaptively modulate spatial information and guide a refined detail injection. Furthermore, we propose a texture loss function to further guide our model to learn detail perception in each band. Experiments on QuickBird and GaoFen-1 datasets show that our method achieves superior performance and produces visually pleasing fusion images. Our code is available at https://github.com/yisun98/AFPN.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Detail Injection-Based Feature Pyramid Network for Pan-Sharpening\",\"authors\":\"Yi Sun, Yuanlin Zhang, Yuan Yuan\",\"doi\":\"10.1109/ICIP46576.2022.9897212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many remarkable works have been proposed to deal with distortions problems in image fusion to date. However, the spectral distortion and the spatial distortion cannot always be well addressed at the same time. To deal with this, we propose an Adaptive Feature Pyramid Network (AFPN) to efficiently embed an Adaptive Detail Injection (ADI) module at different scales. Feature-domain injection gains are proposed in the ADI module to adaptively modulate spatial information and guide a refined detail injection. Furthermore, we propose a texture loss function to further guide our model to learn detail perception in each band. Experiments on QuickBird and GaoFen-1 datasets show that our method achieves superior performance and produces visually pleasing fusion images. Our code is available at https://github.com/yisun98/AFPN.\",\"PeriodicalId\":387035,\"journal\":{\"name\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP46576.2022.9897212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

迄今为止,在处理图像融合中的失真问题方面已经提出了许多卓有成效的工作。然而,光谱畸变和空间畸变往往不能同时得到很好的解决。为了解决这个问题,我们提出了一种自适应特征金字塔网络(AFPN)来有效地嵌入不同尺度的自适应细节注入(ADI)模块。在ADI模块中提出了特征域注入增益,用于自适应调制空间信息并引导精细的细节注入。此外,我们提出了纹理损失函数来进一步指导我们的模型学习每个波段的细节感知。在QuickBird和高分一号数据集上的实验表明,该方法取得了较好的融合效果。我们的代码可在https://github.com/yisun98/AFPN上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Detail Injection-Based Feature Pyramid Network for Pan-Sharpening
Many remarkable works have been proposed to deal with distortions problems in image fusion to date. However, the spectral distortion and the spatial distortion cannot always be well addressed at the same time. To deal with this, we propose an Adaptive Feature Pyramid Network (AFPN) to efficiently embed an Adaptive Detail Injection (ADI) module at different scales. Feature-domain injection gains are proposed in the ADI module to adaptively modulate spatial information and guide a refined detail injection. Furthermore, we propose a texture loss function to further guide our model to learn detail perception in each band. Experiments on QuickBird and GaoFen-1 datasets show that our method achieves superior performance and produces visually pleasing fusion images. Our code is available at https://github.com/yisun98/AFPN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信