{"title":"连续语音识别中的语言建模和搜索方法","authors":"N. Deshmukh, J. Picone","doi":"10.1109/SECON.1995.513083","DOIUrl":null,"url":null,"abstract":"Automatic speech recognition has made significant strides from the days of recognizing isolated words. State-of-the-art systems are capable of recognizing tens of thousands of words in complex domains such as newspaper correspondence and travel planning. A major part of this success is due to advances in language modeling and search techniques that support efficient, sub-optimal decoding over large search spaces. The benefit from focusing a recognition system on a particular domain has motivated a steady progression from static language models towards more adaptive models that consist of mixtures of bigrams, trigrams and long-distance n-grams. Similarly, the availability of multiple sources of information about the correct word hypothesis has led to the advent of efficient multi-pass search strategies. The result is a powerful pattern-matching paradigm that has applications to a wide range of signal detection problems. Future research in large vocabulary continuous speech recognition will be directed towards developing more efficient means of dynamically integrating such information.","PeriodicalId":334874,"journal":{"name":"Proceedings IEEE Southeastcon '95. Visualize the Future","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Methodologies for language modeling and search in continuous speech recognition\",\"authors\":\"N. Deshmukh, J. Picone\",\"doi\":\"10.1109/SECON.1995.513083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic speech recognition has made significant strides from the days of recognizing isolated words. State-of-the-art systems are capable of recognizing tens of thousands of words in complex domains such as newspaper correspondence and travel planning. A major part of this success is due to advances in language modeling and search techniques that support efficient, sub-optimal decoding over large search spaces. The benefit from focusing a recognition system on a particular domain has motivated a steady progression from static language models towards more adaptive models that consist of mixtures of bigrams, trigrams and long-distance n-grams. Similarly, the availability of multiple sources of information about the correct word hypothesis has led to the advent of efficient multi-pass search strategies. The result is a powerful pattern-matching paradigm that has applications to a wide range of signal detection problems. Future research in large vocabulary continuous speech recognition will be directed towards developing more efficient means of dynamically integrating such information.\",\"PeriodicalId\":334874,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '95. Visualize the Future\",\"volume\":\"188 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '95. Visualize the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1995.513083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '95. Visualize the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1995.513083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methodologies for language modeling and search in continuous speech recognition
Automatic speech recognition has made significant strides from the days of recognizing isolated words. State-of-the-art systems are capable of recognizing tens of thousands of words in complex domains such as newspaper correspondence and travel planning. A major part of this success is due to advances in language modeling and search techniques that support efficient, sub-optimal decoding over large search spaces. The benefit from focusing a recognition system on a particular domain has motivated a steady progression from static language models towards more adaptive models that consist of mixtures of bigrams, trigrams and long-distance n-grams. Similarly, the availability of multiple sources of information about the correct word hypothesis has led to the advent of efficient multi-pass search strategies. The result is a powerful pattern-matching paradigm that has applications to a wide range of signal detection problems. Future research in large vocabulary continuous speech recognition will be directed towards developing more efficient means of dynamically integrating such information.