用递归结构实现离散余弦变换及其逆

Jiun-Lung Wang, Chung-Bin Wu, Bin-Da Liu, J. Yang
{"title":"用递归结构实现离散余弦变换及其逆","authors":"Jiun-Lung Wang, Chung-Bin Wu, Bin-Da Liu, J. Yang","doi":"10.1109/SIPS.1999.822317","DOIUrl":null,"url":null,"abstract":"This paper discusses the recursive implementation of the discrete cosine transform (DCT) and its inverse (IDCT). The transform is constructed by using recursive filter structure to generate the transform kernel values. We first derive two trigonometric equations, which can be represented as the Chebyshev polynomial. Then we demonstrate that general length of the DCT and IDCT can be efficiently implemented by using the regressive structure derived from the recursive formulae. The computational complexity of each data throughput in these architectures is less than that in the conventional ones by as many as 50%. The proposed architectures are regular and suitable for parallel VLSI implementation.","PeriodicalId":275030,"journal":{"name":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Implementation of the discrete cosine transform and its inverse by recursive structures\",\"authors\":\"Jiun-Lung Wang, Chung-Bin Wu, Bin-Da Liu, J. Yang\",\"doi\":\"10.1109/SIPS.1999.822317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the recursive implementation of the discrete cosine transform (DCT) and its inverse (IDCT). The transform is constructed by using recursive filter structure to generate the transform kernel values. We first derive two trigonometric equations, which can be represented as the Chebyshev polynomial. Then we demonstrate that general length of the DCT and IDCT can be efficiently implemented by using the regressive structure derived from the recursive formulae. The computational complexity of each data throughput in these architectures is less than that in the conventional ones by as many as 50%. The proposed architectures are regular and suitable for parallel VLSI implementation.\",\"PeriodicalId\":275030,\"journal\":{\"name\":\"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.1999.822317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.1999.822317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文讨论了离散余弦变换(DCT)及其逆变换(IDCT)的递归实现。利用递归滤波结构构造变换,生成变换核值。我们首先推导出两个三角方程,它们可以表示为切比雪夫多项式。然后,我们证明了利用递归公式推导的回归结构可以有效地实现DCT和IDCT的一般长度。在这些体系结构中,每个数据吞吐量的计算复杂度比传统体系结构低50%。所提出的架构是规则的,适合于并行VLSI的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of the discrete cosine transform and its inverse by recursive structures
This paper discusses the recursive implementation of the discrete cosine transform (DCT) and its inverse (IDCT). The transform is constructed by using recursive filter structure to generate the transform kernel values. We first derive two trigonometric equations, which can be represented as the Chebyshev polynomial. Then we demonstrate that general length of the DCT and IDCT can be efficiently implemented by using the regressive structure derived from the recursive formulae. The computational complexity of each data throughput in these architectures is less than that in the conventional ones by as many as 50%. The proposed architectures are regular and suitable for parallel VLSI implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信