基于GhostNet-SSD的车辆检测方法

Jing Liu, Wei Cong, Hongyan Li
{"title":"基于GhostNet-SSD的车辆检测方法","authors":"Jing Liu, Wei Cong, Hongyan Li","doi":"10.1109/ICVRIS51417.2020.00053","DOIUrl":null,"url":null,"abstract":"The traditional vehicle target detection algorithm needs to select appropriate features for different image scenes, resulting in poor generalization ability. In order to solve this problem, this paper proposes an image vehicle detection method based on SSD. This method combines GhostNet and SSD to extract feature maps from GhostNet for classified and location prediction. To some extent, the detection accuracy and speed of the vehicle are improved. Experimental results show that this method has a high recognition rate and is better than the traditional algorithm.","PeriodicalId":162549,"journal":{"name":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Vehicle Detection Method Based on GhostNet-SSD\",\"authors\":\"Jing Liu, Wei Cong, Hongyan Li\",\"doi\":\"10.1109/ICVRIS51417.2020.00053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional vehicle target detection algorithm needs to select appropriate features for different image scenes, resulting in poor generalization ability. In order to solve this problem, this paper proposes an image vehicle detection method based on SSD. This method combines GhostNet and SSD to extract feature maps from GhostNet for classified and location prediction. To some extent, the detection accuracy and speed of the vehicle are improved. Experimental results show that this method has a high recognition rate and is better than the traditional algorithm.\",\"PeriodicalId\":162549,\"journal\":{\"name\":\"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS51417.2020.00053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS51417.2020.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的车辆目标检测算法需要针对不同的图像场景选择合适的特征,导致泛化能力较差。为了解决这一问题,本文提出了一种基于固态硬盘的图像车辆检测方法。该方法将GhostNet和SSD相结合,从GhostNet中提取特征图进行分类和位置预测。在一定程度上提高了车辆的检测精度和速度。实验结果表明,该方法具有较高的识别率,优于传统算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Detection Method Based on GhostNet-SSD
The traditional vehicle target detection algorithm needs to select appropriate features for different image scenes, resulting in poor generalization ability. In order to solve this problem, this paper proposes an image vehicle detection method based on SSD. This method combines GhostNet and SSD to extract feature maps from GhostNet for classified and location prediction. To some extent, the detection accuracy and speed of the vehicle are improved. Experimental results show that this method has a high recognition rate and is better than the traditional algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信