条件氮化镓的介电乳房幻像

Wenyi Shao
{"title":"条件氮化镓的介电乳房幻像","authors":"Wenyi Shao","doi":"10.1109/AP-S/USNC-URSI47032.2022.9887113","DOIUrl":null,"url":null,"abstract":"Synthetic dielectric breast phantoms are generated by conditional generative adversarial network (CGAN) in this paper. Phantoms produced by the generative neural network are 128 by 128 pixels for frequency 3 GHz. The generated phantoms can be used in electromagnetic simulations for microwave breast imaging (MBI) research and can serve as the training data to develop machine learning algorithms for MBI research.","PeriodicalId":371560,"journal":{"name":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dielectric Breast Phantom by A Conditional GAN\",\"authors\":\"Wenyi Shao\",\"doi\":\"10.1109/AP-S/USNC-URSI47032.2022.9887113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic dielectric breast phantoms are generated by conditional generative adversarial network (CGAN) in this paper. Phantoms produced by the generative neural network are 128 by 128 pixels for frequency 3 GHz. The generated phantoms can be used in electromagnetic simulations for microwave breast imaging (MBI) research and can serve as the training data to develop machine learning algorithms for MBI research.\",\"PeriodicalId\":371560,\"journal\":{\"name\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AP-S/USNC-URSI47032.2022.9887113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用条件生成对抗网络(CGAN)生成合成电介质乳房幻象。生成式神经网络产生的幻象为128 × 128像素,频率为3ghz。生成的图像可用于微波乳房成像(MBI)研究的电磁模拟,并可作为MBI研究机器学习算法的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dielectric Breast Phantom by A Conditional GAN
Synthetic dielectric breast phantoms are generated by conditional generative adversarial network (CGAN) in this paper. Phantoms produced by the generative neural network are 128 by 128 pixels for frequency 3 GHz. The generated phantoms can be used in electromagnetic simulations for microwave breast imaging (MBI) research and can serve as the training data to develop machine learning algorithms for MBI research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信