使用资源受限边缘的大规模流分析

R. Das, G. Bernardo, H. Bal
{"title":"使用资源受限边缘的大规模流分析","authors":"R. Das, G. Bernardo, H. Bal","doi":"10.1109/EDGE.2018.00027","DOIUrl":null,"url":null,"abstract":"A key challenge for smart city analytics is fast extraction, accumulation and processing of sensor data collected from a large number of IoT devices. Edge computing has enabled processing of simple analytics, such as aggregation, geographically closer to the IoT devices to improve latency. However, the throughput of processing in the edge depends on the type of resources available, the number of IoT devices connected and the type of stream analytics performed in the edge. We introduce a framework called Seagull for building efficient, large scale IoT-based applications. Our framework distributes the stream analytics processing tasks to the nodes based on their proximity to the sensor data source as well as the amount of processing the nodes can handle. Our evaluation shows the effect of various stream analytics parameters on the maximum sustainable throughput for a resource-constrained edge device.","PeriodicalId":396887,"journal":{"name":"2018 IEEE International Conference on Edge Computing (EDGE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Large Scale Stream Analytics Using a Resource-Constrained Edge\",\"authors\":\"R. Das, G. Bernardo, H. Bal\",\"doi\":\"10.1109/EDGE.2018.00027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key challenge for smart city analytics is fast extraction, accumulation and processing of sensor data collected from a large number of IoT devices. Edge computing has enabled processing of simple analytics, such as aggregation, geographically closer to the IoT devices to improve latency. However, the throughput of processing in the edge depends on the type of resources available, the number of IoT devices connected and the type of stream analytics performed in the edge. We introduce a framework called Seagull for building efficient, large scale IoT-based applications. Our framework distributes the stream analytics processing tasks to the nodes based on their proximity to the sensor data source as well as the amount of processing the nodes can handle. Our evaluation shows the effect of various stream analytics parameters on the maximum sustainable throughput for a resource-constrained edge device.\",\"PeriodicalId\":396887,\"journal\":{\"name\":\"2018 IEEE International Conference on Edge Computing (EDGE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Edge Computing (EDGE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDGE.2018.00027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Edge Computing (EDGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDGE.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

智慧城市分析面临的一个关键挑战是快速提取、积累和处理从大量物联网设备收集的传感器数据。边缘计算能够处理简单的分析,例如聚合,在地理上更靠近物联网设备,以改善延迟。然而,边缘处理的吞吐量取决于可用资源的类型、连接的物联网设备的数量以及在边缘执行的流分析的类型。我们引入了一个名为Seagull的框架,用于构建高效、大规模的基于物联网的应用程序。我们的框架根据节点与传感器数据源的接近程度以及节点可以处理的处理量将流分析处理任务分配给节点。我们的评估显示了各种流分析参数对资源受限边缘设备的最大可持续吞吐量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Scale Stream Analytics Using a Resource-Constrained Edge
A key challenge for smart city analytics is fast extraction, accumulation and processing of sensor data collected from a large number of IoT devices. Edge computing has enabled processing of simple analytics, such as aggregation, geographically closer to the IoT devices to improve latency. However, the throughput of processing in the edge depends on the type of resources available, the number of IoT devices connected and the type of stream analytics performed in the edge. We introduce a framework called Seagull for building efficient, large scale IoT-based applications. Our framework distributes the stream analytics processing tasks to the nodes based on their proximity to the sensor data source as well as the amount of processing the nodes can handle. Our evaluation shows the effect of various stream analytics parameters on the maximum sustainable throughput for a resource-constrained edge device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信