利用压缩感知中的小波域依赖关系

Yookyung Kim, M. Nadar, A. Bilgin
{"title":"利用压缩感知中的小波域依赖关系","authors":"Yookyung Kim, M. Nadar, A. Bilgin","doi":"10.1109/DCC.2010.51","DOIUrl":null,"url":null,"abstract":"This paper presents a method for improving wavelet-based Compressed Sensing (CS) reconstruction algorithms by exploiting the dependencies among wavelet coefficients. During CS recovery, a simple measure of significance for each wavelet coefficient is calculated using a weighted sum of the (estimated) magnitudes of the wavelet coefficient, its highly correlated neighbors, and parent. This simple measure is incorporated into three CS recovery algorithms, Reweighted L1 minimization algorithms (RL1), Iteratively Reweighted Least Squares (IRLS), and Iterative Hard Thresholding (IHT). Experimental results using one-dimensional signals and images illustrate that the proposed method (i) improves reconstruction quality for a given number of measurements, (ii) requires fewer measurements for a desired reconstruction quality, and (iii) significantly reduces reconstruction time.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploiting Wavelet-Domain Dependencies in Compressed Sensing\",\"authors\":\"Yookyung Kim, M. Nadar, A. Bilgin\",\"doi\":\"10.1109/DCC.2010.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for improving wavelet-based Compressed Sensing (CS) reconstruction algorithms by exploiting the dependencies among wavelet coefficients. During CS recovery, a simple measure of significance for each wavelet coefficient is calculated using a weighted sum of the (estimated) magnitudes of the wavelet coefficient, its highly correlated neighbors, and parent. This simple measure is incorporated into three CS recovery algorithms, Reweighted L1 minimization algorithms (RL1), Iteratively Reweighted Least Squares (IRLS), and Iterative Hard Thresholding (IHT). Experimental results using one-dimensional signals and images illustrate that the proposed method (i) improves reconstruction quality for a given number of measurements, (ii) requires fewer measurements for a desired reconstruction quality, and (iii) significantly reduces reconstruction time.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种利用小波系数之间的相关性来改进基于小波压缩感知(CS)重构算法的方法。在CS恢复过程中,使用(估计的)小波系数、其高度相关的相邻系数和父值的加权和来计算每个小波系数的简单显著性度量。这种简单的测量方法被整合到三种CS恢复算法中,即重新加权L1最小化算法(RL1)、迭代重新加权最小二乘(IRLS)和迭代硬阈值(IHT)。使用一维信号和图像的实验结果表明,所提出的方法(i)提高了给定测量次数的重建质量,(ii)需要更少的测量来获得所需的重建质量,(iii)显着缩短了重建时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Wavelet-Domain Dependencies in Compressed Sensing
This paper presents a method for improving wavelet-based Compressed Sensing (CS) reconstruction algorithms by exploiting the dependencies among wavelet coefficients. During CS recovery, a simple measure of significance for each wavelet coefficient is calculated using a weighted sum of the (estimated) magnitudes of the wavelet coefficient, its highly correlated neighbors, and parent. This simple measure is incorporated into three CS recovery algorithms, Reweighted L1 minimization algorithms (RL1), Iteratively Reweighted Least Squares (IRLS), and Iterative Hard Thresholding (IHT). Experimental results using one-dimensional signals and images illustrate that the proposed method (i) improves reconstruction quality for a given number of measurements, (ii) requires fewer measurements for a desired reconstruction quality, and (iii) significantly reduces reconstruction time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信