基于视觉认知机制的自然图像质量评价

Run Zhang, Yongbin Wang
{"title":"基于视觉认知机制的自然图像质量评价","authors":"Run Zhang, Yongbin Wang","doi":"10.1109/ICIS.2017.7960042","DOIUrl":null,"url":null,"abstract":"In view of the main problems existed at present in no-reference (NR) natural image quality assessment (IQA), This paper proposes a more general-purpose, efficient and integrated resolution based on visual cognitive mechanism. Firstly, it puts forward a inspiring visual cognitive computing model (IVCCM) based on visual heuristic principles. Secondly, it presents a asymmetric generalized Gaussian mixture distribution model (AGGMD) for natural images. Thirdly, it extracts quality-aware features from natural images and form Quality-aware Uniform Features Descriptors (QAUFD). Fourthly, it realizes the resolution with IVCCM, AGGDM and QAUFD to NR IQA. Experimental results show that the proposed resolution correlates better with human perceptual measures.","PeriodicalId":301467,"journal":{"name":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural image quality assessment based on visual cognitive mechanism\",\"authors\":\"Run Zhang, Yongbin Wang\",\"doi\":\"10.1109/ICIS.2017.7960042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the main problems existed at present in no-reference (NR) natural image quality assessment (IQA), This paper proposes a more general-purpose, efficient and integrated resolution based on visual cognitive mechanism. Firstly, it puts forward a inspiring visual cognitive computing model (IVCCM) based on visual heuristic principles. Secondly, it presents a asymmetric generalized Gaussian mixture distribution model (AGGMD) for natural images. Thirdly, it extracts quality-aware features from natural images and form Quality-aware Uniform Features Descriptors (QAUFD). Fourthly, it realizes the resolution with IVCCM, AGGDM and QAUFD to NR IQA. Experimental results show that the proposed resolution correlates better with human perceptual measures.\",\"PeriodicalId\":301467,\"journal\":{\"name\":\"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIS.2017.7960042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2017.7960042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对目前无参考(NR)自然图像质量评估(IQA)中存在的主要问题,提出了一种基于视觉认知机制的通用、高效、综合的图像质量评估方法。首先,提出了一种基于视觉启发式原理的启发式视觉认知计算模型(IVCCM)。其次,提出了一种自然图像的非对称广义高斯混合分布模型(AGGMD)。第三,从自然图像中提取质量感知特征,形成质量感知统一特征描述符(QAUFD)。第四,实现了IVCCM、AGGDM和QAUFD对NR IQA的解析。实验结果表明,所提出的分辨率与人类感知测量具有较好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural image quality assessment based on visual cognitive mechanism
In view of the main problems existed at present in no-reference (NR) natural image quality assessment (IQA), This paper proposes a more general-purpose, efficient and integrated resolution based on visual cognitive mechanism. Firstly, it puts forward a inspiring visual cognitive computing model (IVCCM) based on visual heuristic principles. Secondly, it presents a asymmetric generalized Gaussian mixture distribution model (AGGMD) for natural images. Thirdly, it extracts quality-aware features from natural images and form Quality-aware Uniform Features Descriptors (QAUFD). Fourthly, it realizes the resolution with IVCCM, AGGDM and QAUFD to NR IQA. Experimental results show that the proposed resolution correlates better with human perceptual measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信