大规模高效视频相似度搜索

M. S. Uysal, C. Beecks, Daniel Sabinasz, T. Seidl
{"title":"大规模高效视频相似度搜索","authors":"M. S. Uysal, C. Beecks, Daniel Sabinasz, T. Seidl","doi":"10.1145/2809948.2809950","DOIUrl":null,"url":null,"abstract":"Recently, the rich diversity of the video capture devices and the high usage of the Internet have generated a great amount of video data, which attracts the attention of researchers with respect to the development of novel effective and efficient video retrieval approaches. In this paper, we investigate the effectiveness and efficiency of the lower-bounding filter distance functions of the well-known similarity measure Earth Mover's Distance (EMD) on signature databases, including the recently introduced Independent Minimization for Signatures (IM-Sig). We conduct the experiments on a public dataset comprising various categories with visually similar videos, and another large-scale real world video dataset consisting of 350,000 near-duplicate videos. To the best of our knowledge, this is the first work investigating the effectiveness and efficiency of the lower-bounding filter distance functions on databases consisting of signatures, i.e adaptive-binned representations. The experimental evaluation indicates both high effectiveness and efficiency of the IM-Sig, outperforming the state-of-the-art techniques.","PeriodicalId":142249,"journal":{"name":"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Large-scale Efficient and Effective Video Similarity Search\",\"authors\":\"M. S. Uysal, C. Beecks, Daniel Sabinasz, T. Seidl\",\"doi\":\"10.1145/2809948.2809950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the rich diversity of the video capture devices and the high usage of the Internet have generated a great amount of video data, which attracts the attention of researchers with respect to the development of novel effective and efficient video retrieval approaches. In this paper, we investigate the effectiveness and efficiency of the lower-bounding filter distance functions of the well-known similarity measure Earth Mover's Distance (EMD) on signature databases, including the recently introduced Independent Minimization for Signatures (IM-Sig). We conduct the experiments on a public dataset comprising various categories with visually similar videos, and another large-scale real world video dataset consisting of 350,000 near-duplicate videos. To the best of our knowledge, this is the first work investigating the effectiveness and efficiency of the lower-bounding filter distance functions on databases consisting of signatures, i.e adaptive-binned representations. The experimental evaluation indicates both high effectiveness and efficiency of the IM-Sig, outperforming the state-of-the-art techniques.\",\"PeriodicalId\":142249,\"journal\":{\"name\":\"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2809948.2809950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Workshop on Large-Scale and Distributed System for Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2809948.2809950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,视频采集设备的丰富多样性和互联网的高度使用产生了大量的视频数据,这引起了研究人员对开发新颖有效的视频检索方法的关注。在本文中,我们研究了众所周知的相似度量Earth Mover’s distance (EMD)在特征数据库上的下限滤波距离函数的有效性和效率,包括最近引入的签名独立最小化(IM-Sig)。我们在一个公共数据集上进行实验,该数据集包括视觉上相似的视频的各种类别,以及另一个由350,000个近重复视频组成的大规模真实世界视频数据集。据我们所知,这是第一个研究由签名组成的数据库上下限过滤距离函数的有效性和效率的工作,即自适应分类表示。实验评价表明,IM-Sig具有较高的有效性和效率,优于目前最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale Efficient and Effective Video Similarity Search
Recently, the rich diversity of the video capture devices and the high usage of the Internet have generated a great amount of video data, which attracts the attention of researchers with respect to the development of novel effective and efficient video retrieval approaches. In this paper, we investigate the effectiveness and efficiency of the lower-bounding filter distance functions of the well-known similarity measure Earth Mover's Distance (EMD) on signature databases, including the recently introduced Independent Minimization for Signatures (IM-Sig). We conduct the experiments on a public dataset comprising various categories with visually similar videos, and another large-scale real world video dataset consisting of 350,000 near-duplicate videos. To the best of our knowledge, this is the first work investigating the effectiveness and efficiency of the lower-bounding filter distance functions on databases consisting of signatures, i.e adaptive-binned representations. The experimental evaluation indicates both high effectiveness and efficiency of the IM-Sig, outperforming the state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信