模糊神经网络在医学图像处理中的应用

W. Gan
{"title":"模糊神经网络在医学图像处理中的应用","authors":"W. Gan","doi":"10.1109/IJCNN.1992.227314","DOIUrl":null,"url":null,"abstract":"The author proposes the use of fuzzy neural networks to improve the resolution and segmentation of medical images. The backpropagation neural network is used to obtain an optimized membership function. The algorithms are presented to implement the fuzzy neural networks for both types of applications. Preliminary results are given. The advantage of using fuzzy neural networks compared with conventional neural networks is to reduce the number of elements in each neural network layer. Thus computation time can be reduced. Only tomographic images are considered.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of fuzzy neural networks to medical image processing\",\"authors\":\"W. Gan\",\"doi\":\"10.1109/IJCNN.1992.227314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author proposes the use of fuzzy neural networks to improve the resolution and segmentation of medical images. The backpropagation neural network is used to obtain an optimized membership function. The algorithms are presented to implement the fuzzy neural networks for both types of applications. Preliminary results are given. The advantage of using fuzzy neural networks compared with conventional neural networks is to reduce the number of elements in each neural network layer. Thus computation time can be reduced. Only tomographic images are considered.<<ETX>>\",\"PeriodicalId\":286849,\"journal\":{\"name\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1992.227314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.227314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作者提出利用模糊神经网络来提高医学图像的分辨率和分割。利用反向传播神经网络得到最优的隶属度函数。本文给出了实现模糊神经网络的算法。给出了初步结果。与传统神经网络相比,模糊神经网络的优点是减少了神经网络各层的元素数量。这样可以减少计算时间。仅考虑层析图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of fuzzy neural networks to medical image processing
The author proposes the use of fuzzy neural networks to improve the resolution and segmentation of medical images. The backpropagation neural network is used to obtain an optimized membership function. The algorithms are presented to implement the fuzzy neural networks for both types of applications. Preliminary results are given. The advantage of using fuzzy neural networks compared with conventional neural networks is to reduce the number of elements in each neural network layer. Thus computation time can be reduced. Only tomographic images are considered.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信