{"title":"管道基础设施保护的航空图像入侵检测","authors":"P. Sidike, Almabrok E. Essa, V. Asari","doi":"10.1109/NAECON.2015.7443037","DOIUrl":null,"url":null,"abstract":"We present an automated mechanism that can detect and issue warnings of machinery threat such as the presence of construction vehicles on pipeline right-of-way. The proposed scheme models the human visual perception concepts to extract fine details of objects by utilizing the corners and gradient histogram information in pyramid levels. Two real-world aerial image datasets are used for testing and evaluation.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intrusion detection in aerial imagery for protecting pipeline infrastructure\",\"authors\":\"P. Sidike, Almabrok E. Essa, V. Asari\",\"doi\":\"10.1109/NAECON.2015.7443037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an automated mechanism that can detect and issue warnings of machinery threat such as the presence of construction vehicles on pipeline right-of-way. The proposed scheme models the human visual perception concepts to extract fine details of objects by utilizing the corners and gradient histogram information in pyramid levels. Two real-world aerial image datasets are used for testing and evaluation.\",\"PeriodicalId\":133804,\"journal\":{\"name\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2015.7443037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Intrusion detection in aerial imagery for protecting pipeline infrastructure
We present an automated mechanism that can detect and issue warnings of machinery threat such as the presence of construction vehicles on pipeline right-of-way. The proposed scheme models the human visual perception concepts to extract fine details of objects by utilizing the corners and gradient histogram information in pyramid levels. Two real-world aerial image datasets are used for testing and evaluation.