Stefan Leitner, Thomas Kulterer, Hannes Gruebler, A. Muetze
{"title":"低成本次分数马力BLDC爪极电机热性能研究","authors":"Stefan Leitner, Thomas Kulterer, Hannes Gruebler, A. Muetze","doi":"10.1109/ECCE44975.2020.9236284","DOIUrl":null,"url":null,"abstract":"Automotive auxiliary drives often have to operate over a large temperature range, e.g., between -40 and 135 degrees Celcius. Especially for operation at high ambient temperatures, the understanding of their thermal characteristics is highly important as, e.g., the electromagnetic characteristics of permanent-magnets are strongly temperature-dependent. To this aim, this paper investigates the steady-state and transient thermal performances of different low-cost sub-fractional horsepower single-phase BLDC claw-pole motor designs suitable, e.g., for fan applications. Both numerical and experimental analyses are carried out to determine the parameters of a simple thermal equivalent circuit. The studied claw-pole motor designs show similar thermal performances, which allows all of them to be used in an automotive auxiliary drive system.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of the Thermal Performances of Low-Cost Sub-Fractional Horsepower BLDC Claw-Pole Motor Designs\",\"authors\":\"Stefan Leitner, Thomas Kulterer, Hannes Gruebler, A. Muetze\",\"doi\":\"10.1109/ECCE44975.2020.9236284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive auxiliary drives often have to operate over a large temperature range, e.g., between -40 and 135 degrees Celcius. Especially for operation at high ambient temperatures, the understanding of their thermal characteristics is highly important as, e.g., the electromagnetic characteristics of permanent-magnets are strongly temperature-dependent. To this aim, this paper investigates the steady-state and transient thermal performances of different low-cost sub-fractional horsepower single-phase BLDC claw-pole motor designs suitable, e.g., for fan applications. Both numerical and experimental analyses are carried out to determine the parameters of a simple thermal equivalent circuit. The studied claw-pole motor designs show similar thermal performances, which allows all of them to be used in an automotive auxiliary drive system.\",\"PeriodicalId\":433712,\"journal\":{\"name\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE44975.2020.9236284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9236284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of the Thermal Performances of Low-Cost Sub-Fractional Horsepower BLDC Claw-Pole Motor Designs
Automotive auxiliary drives often have to operate over a large temperature range, e.g., between -40 and 135 degrees Celcius. Especially for operation at high ambient temperatures, the understanding of their thermal characteristics is highly important as, e.g., the electromagnetic characteristics of permanent-magnets are strongly temperature-dependent. To this aim, this paper investigates the steady-state and transient thermal performances of different low-cost sub-fractional horsepower single-phase BLDC claw-pole motor designs suitable, e.g., for fan applications. Both numerical and experimental analyses are carried out to determine the parameters of a simple thermal equivalent circuit. The studied claw-pole motor designs show similar thermal performances, which allows all of them to be used in an automotive auxiliary drive system.