基于改进YOLOv5的语义SLAM映射新算法

Weixiang Shen, Yongxing Jia, Mingcan Li, Junchao Zhu
{"title":"基于改进YOLOv5的语义SLAM映射新算法","authors":"Weixiang Shen, Yongxing Jia, Mingcan Li, Junchao Zhu","doi":"10.1109/CISP-BMEI53629.2021.9624443","DOIUrl":null,"url":null,"abstract":"Visual SLAM (V-SLAM) uses cameras for information input. In mapping, the spatial geometric information of the point cloud is used, which lacks the semantic information of the objects in the environment. This paper proposes a new semantic mapping algorithm based on improved YOLOv5. Firstly, A Pyramid Scene Parsing Network (PSPNet) segmentation head is added to YOLOv5 for performing semantic extraction of the environment. Subsequently, the robot pose is estimated with the ORB-SLAM2 framework. Finally, the semantic images, the depth images and the pose transformation matrix are sent to a mapping module to fuse a dense point cloud semantic map. Experiments show that the algorithm in this paper builds an accurate semantic map on KITTI dataset. Combined with the depth map that eliminates interference factors, it has good accuracy and robustness for semantic mapping in large-scale scenarios.","PeriodicalId":131256,"journal":{"name":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Semantic SLAM Mapping Algorithm Based on Improved YOLOv5\",\"authors\":\"Weixiang Shen, Yongxing Jia, Mingcan Li, Junchao Zhu\",\"doi\":\"10.1109/CISP-BMEI53629.2021.9624443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual SLAM (V-SLAM) uses cameras for information input. In mapping, the spatial geometric information of the point cloud is used, which lacks the semantic information of the objects in the environment. This paper proposes a new semantic mapping algorithm based on improved YOLOv5. Firstly, A Pyramid Scene Parsing Network (PSPNet) segmentation head is added to YOLOv5 for performing semantic extraction of the environment. Subsequently, the robot pose is estimated with the ORB-SLAM2 framework. Finally, the semantic images, the depth images and the pose transformation matrix are sent to a mapping module to fuse a dense point cloud semantic map. Experiments show that the algorithm in this paper builds an accurate semantic map on KITTI dataset. Combined with the depth map that eliminates interference factors, it has good accuracy and robustness for semantic mapping in large-scale scenarios.\",\"PeriodicalId\":131256,\"journal\":{\"name\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI53629.2021.9624443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI53629.2021.9624443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉SLAM (V-SLAM)使用摄像头进行信息输入。在映射中,利用点云的空间几何信息,缺乏环境中物体的语义信息。本文提出了一种新的基于改进YOLOv5的语义映射算法。首先,在YOLOv5中加入金字塔场景解析网络(PSPNet)分割头,对环境进行语义提取;随后,利用ORB-SLAM2框架对机器人姿态进行估计。最后,将语义图像、深度图像和姿态变换矩阵发送到映射模块,融合成密集的点云语义图。实验表明,本文算法在KITTI数据集上构建了准确的语义图。结合深度图消除干扰因素,对大规模场景下的语义映射具有较好的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Semantic SLAM Mapping Algorithm Based on Improved YOLOv5
Visual SLAM (V-SLAM) uses cameras for information input. In mapping, the spatial geometric information of the point cloud is used, which lacks the semantic information of the objects in the environment. This paper proposes a new semantic mapping algorithm based on improved YOLOv5. Firstly, A Pyramid Scene Parsing Network (PSPNet) segmentation head is added to YOLOv5 for performing semantic extraction of the environment. Subsequently, the robot pose is estimated with the ORB-SLAM2 framework. Finally, the semantic images, the depth images and the pose transformation matrix are sent to a mapping module to fuse a dense point cloud semantic map. Experiments show that the algorithm in this paper builds an accurate semantic map on KITTI dataset. Combined with the depth map that eliminates interference factors, it has good accuracy and robustness for semantic mapping in large-scale scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信