基于后置和静态符号分解的并行稀疏逻辑推理

M. Cosnard, L. Grigori
{"title":"基于后置和静态符号分解的并行稀疏逻辑推理","authors":"M. Cosnard, L. Grigori","doi":"10.1109/IPDPS.2000.846068","DOIUrl":null,"url":null,"abstract":"In this paper we present several improvements of widely used parallel LU factorization methods on sparse matrices. First we introduce the LU elimination forest and then we characterize the L, U factors in terms of their corresponding LU elimination forest. This characterization can be used as a compact storage scheme of the matrix as well as of the task dependence graph. To improve the use of BLAS in the numerical factorization, we perform a postorder traversal of the LU elimination forest, thus obtaining larger supernodes. To expose more task parallelism for a sparse matrix, we build a more accurate task dependence graph that includes only the least necessary dependences. Experiments compared favorably our methods against methods implemented in the S* environment on the SGI's Origin2000 multiprocessor.","PeriodicalId":206541,"journal":{"name":"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using postordering and static symbolic factorization for parallel sparse LU\",\"authors\":\"M. Cosnard, L. Grigori\",\"doi\":\"10.1109/IPDPS.2000.846068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present several improvements of widely used parallel LU factorization methods on sparse matrices. First we introduce the LU elimination forest and then we characterize the L, U factors in terms of their corresponding LU elimination forest. This characterization can be used as a compact storage scheme of the matrix as well as of the task dependence graph. To improve the use of BLAS in the numerical factorization, we perform a postorder traversal of the LU elimination forest, thus obtaining larger supernodes. To expose more task parallelism for a sparse matrix, we build a more accurate task dependence graph that includes only the least necessary dependences. Experiments compared favorably our methods against methods implemented in the S* environment on the SGI's Origin2000 multiprocessor.\",\"PeriodicalId\":206541,\"journal\":{\"name\":\"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2000.846068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2000.846068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文对稀疏矩阵上广泛使用的并行LU分解方法进行了改进。首先介绍了LU消除林,然后根据相应的LU消除林对L、U因子进行了表征。这种表征可以用作矩阵和任务依赖图的紧凑存储方案。为了提高BLAS在数值分解中的使用,我们对LU消除森林进行了后继遍历,从而获得了更大的超级节点。为了为稀疏矩阵提供更多的任务并行性,我们构建了一个更精确的任务依赖图,其中只包含最少的必要依赖。实验将我们的方法与SGI的Origin2000多处理器上在S*环境中实现的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using postordering and static symbolic factorization for parallel sparse LU
In this paper we present several improvements of widely used parallel LU factorization methods on sparse matrices. First we introduce the LU elimination forest and then we characterize the L, U factors in terms of their corresponding LU elimination forest. This characterization can be used as a compact storage scheme of the matrix as well as of the task dependence graph. To improve the use of BLAS in the numerical factorization, we perform a postorder traversal of the LU elimination forest, thus obtaining larger supernodes. To expose more task parallelism for a sparse matrix, we build a more accurate task dependence graph that includes only the least necessary dependences. Experiments compared favorably our methods against methods implemented in the S* environment on the SGI's Origin2000 multiprocessor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信