约束问题的元建模自适应惩罚函数

Oliver Kramer, U. Schlachter, Valentin Spreckels
{"title":"约束问题的元建模自适应惩罚函数","authors":"Oliver Kramer, U. Schlachter, Valentin Spreckels","doi":"10.1109/CEC.2013.6557721","DOIUrl":null,"url":null,"abstract":"Constraints can make a hard optimization problem even harder. We consider the blackbox scenario of unknown fitness and constraint functions. Evolution strategies with their self-adaptive step size control fail on simple problems like the sphere with one linear constraint (tangent problem). In this paper, we introduce an adaptive penalty function oriented to Rechenberg's 1/5th success rule: if less than 1/5th of the candidate population is feasible, the penalty is increased, otherwise, it is decreased. Experimental analyses on the tangent problem demonstrate that this simple strategy leads to very successful results for the high-dimensional constrained sphere function. We accelerate the approach with two regression meta-models, one for the constraint and one for the fitness function.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An adaptive penalty function with meta-modeling for constrained problems\",\"authors\":\"Oliver Kramer, U. Schlachter, Valentin Spreckels\",\"doi\":\"10.1109/CEC.2013.6557721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constraints can make a hard optimization problem even harder. We consider the blackbox scenario of unknown fitness and constraint functions. Evolution strategies with their self-adaptive step size control fail on simple problems like the sphere with one linear constraint (tangent problem). In this paper, we introduce an adaptive penalty function oriented to Rechenberg's 1/5th success rule: if less than 1/5th of the candidate population is feasible, the penalty is increased, otherwise, it is decreased. Experimental analyses on the tangent problem demonstrate that this simple strategy leads to very successful results for the high-dimensional constrained sphere function. We accelerate the approach with two regression meta-models, one for the constraint and one for the fitness function.\",\"PeriodicalId\":211988,\"journal\":{\"name\":\"2013 IEEE Congress on Evolutionary Computation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2013.6557721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

约束可以使一个困难的优化问题变得更加困难。我们考虑了未知适应度和约束函数的黑盒场景。具有自适应步长控制的进化策略在具有单一线性约束的球体(切线问题)等简单问题上失败。本文引入了一种基于Rechenberg 1/5成功法则的自适应惩罚函数,即如果少于1/5的候选种群是可行的,则惩罚增加,否则惩罚减少。对切线问题的实验分析表明,这种简单的策略对于高维约束球函数具有非常成功的结果。我们使用两个回归元模型来加速该方法,一个用于约束,一个用于适应度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive penalty function with meta-modeling for constrained problems
Constraints can make a hard optimization problem even harder. We consider the blackbox scenario of unknown fitness and constraint functions. Evolution strategies with their self-adaptive step size control fail on simple problems like the sphere with one linear constraint (tangent problem). In this paper, we introduce an adaptive penalty function oriented to Rechenberg's 1/5th success rule: if less than 1/5th of the candidate population is feasible, the penalty is increased, otherwise, it is decreased. Experimental analyses on the tangent problem demonstrate that this simple strategy leads to very successful results for the high-dimensional constrained sphere function. We accelerate the approach with two regression meta-models, one for the constraint and one for the fitness function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信