{"title":"结构化自适应网格方法的并行软件基础结构","authors":"S. Kohn, S. Baden","doi":"10.1145/224170.224283","DOIUrl":null,"url":null,"abstract":"Structured adaptive mesh algorithms dynamically allocate computational resources to accurately resolve interesting portions of a numerical calculation. Such methods are difficult to implement and parallelize because they rely on dynamic, irregular data structures. We have developed an efficient, portable, parallel software infrastructure for adaptive mesh methods; our software provides computational scientists with high-level facilities that hide low-level details of parallelism and resource management. We have applied our software infrastructure to the solution of adaptive eigenvalue problems arising in materials design. We describe our software infrastructure and analyze its performance. We also present computational results which indicate that the uniformity restrictions imposed by a data parallel Fortran implementation of a structured adaptive mesh application would significantly impact performance.","PeriodicalId":269909,"journal":{"name":"Proceedings of the IEEE/ACM SC95 Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Parallel Software Infrastructure for Structured Adaptive Mesh Methods\",\"authors\":\"S. Kohn, S. Baden\",\"doi\":\"10.1145/224170.224283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structured adaptive mesh algorithms dynamically allocate computational resources to accurately resolve interesting portions of a numerical calculation. Such methods are difficult to implement and parallelize because they rely on dynamic, irregular data structures. We have developed an efficient, portable, parallel software infrastructure for adaptive mesh methods; our software provides computational scientists with high-level facilities that hide low-level details of parallelism and resource management. We have applied our software infrastructure to the solution of adaptive eigenvalue problems arising in materials design. We describe our software infrastructure and analyze its performance. We also present computational results which indicate that the uniformity restrictions imposed by a data parallel Fortran implementation of a structured adaptive mesh application would significantly impact performance.\",\"PeriodicalId\":269909,\"journal\":{\"name\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE/ACM SC95 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224170.224283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE/ACM SC95 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224170.224283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Parallel Software Infrastructure for Structured Adaptive Mesh Methods
Structured adaptive mesh algorithms dynamically allocate computational resources to accurately resolve interesting portions of a numerical calculation. Such methods are difficult to implement and parallelize because they rely on dynamic, irregular data structures. We have developed an efficient, portable, parallel software infrastructure for adaptive mesh methods; our software provides computational scientists with high-level facilities that hide low-level details of parallelism and resource management. We have applied our software infrastructure to the solution of adaptive eigenvalue problems arising in materials design. We describe our software infrastructure and analyze its performance. We also present computational results which indicate that the uniformity restrictions imposed by a data parallel Fortran implementation of a structured adaptive mesh application would significantly impact performance.