基于层次Dirichlet过程的P2P借贷市场用户图片建模

Danyang Li, Yongquan Liang, An Liu
{"title":"基于层次Dirichlet过程的P2P借贷市场用户图片建模","authors":"Danyang Li, Yongquan Liang, An Liu","doi":"10.1504/IJCSM.2019.10022398","DOIUrl":null,"url":null,"abstract":"The emergence of peer-to-peer (P2P) lending has drawn a lot of attention. The enormous data generated from this billions level market bring us a lots of challenges and opportunities. One interesting question of modelling this data is that can we discover the hidden pattern of users' characteristics from it? Currently, few works have been made to this area. In this article, we try to build a Bayesian probabilistic model to discover the latent user pictures. Especially, we build a user picture model via hierarchical Dirichlet process from the data of one of the biggest market, lending club. The discovered user picture is interpretable and can be evaluated from many perspectives. To demonstrate the usage of user picture, we also proposed a method to predict the loan status. The experimental results show our approach outperformed the comparison methods.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling user pictures with hierarchical Dirichlet process of P2P lending market\",\"authors\":\"Danyang Li, Yongquan Liang, An Liu\",\"doi\":\"10.1504/IJCSM.2019.10022398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of peer-to-peer (P2P) lending has drawn a lot of attention. The enormous data generated from this billions level market bring us a lots of challenges and opportunities. One interesting question of modelling this data is that can we discover the hidden pattern of users' characteristics from it? Currently, few works have been made to this area. In this article, we try to build a Bayesian probabilistic model to discover the latent user pictures. Especially, we build a user picture model via hierarchical Dirichlet process from the data of one of the biggest market, lending club. The discovered user picture is interpretable and can be evaluated from many perspectives. To demonstrate the usage of user picture, we also proposed a method to predict the loan status. The experimental results show our approach outperformed the comparison methods.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2019.10022398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2019.10022398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

P2P借贷的出现引起了人们的广泛关注。这个数十亿级市场产生的海量数据给我们带来了许多挑战和机遇。对这些数据进行建模的一个有趣问题是,我们能否从中发现用户特征的隐藏模式?目前,对这一领域的研究还很少。在本文中,我们尝试建立一个贝叶斯概率模型来发现潜在的用户图片。特别地,我们利用最大的借贷市场之一——借贷俱乐部的数据,通过层次Dirichlet过程建立了用户图像模型。发现的用户图片是可解释的,可以从多个角度进行评估。为了演示用户图片的使用,我们还提出了一种预测贷款状态的方法。实验结果表明,该方法优于其他比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling user pictures with hierarchical Dirichlet process of P2P lending market
The emergence of peer-to-peer (P2P) lending has drawn a lot of attention. The enormous data generated from this billions level market bring us a lots of challenges and opportunities. One interesting question of modelling this data is that can we discover the hidden pattern of users' characteristics from it? Currently, few works have been made to this area. In this article, we try to build a Bayesian probabilistic model to discover the latent user pictures. Especially, we build a user picture model via hierarchical Dirichlet process from the data of one of the biggest market, lending club. The discovered user picture is interpretable and can be evaluated from many perspectives. To demonstrate the usage of user picture, we also proposed a method to predict the loan status. The experimental results show our approach outperformed the comparison methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信