图像分类的泰勒卷积网络

Xiaodi Wang, Ce Li, Yipeng Mou, Baochang Zhang, J. Han, Jianzhuang Liu
{"title":"图像分类的泰勒卷积网络","authors":"Xiaodi Wang, Ce Li, Yipeng Mou, Baochang Zhang, J. Han, Jianzhuang Liu","doi":"10.1109/WACV.2019.00140","DOIUrl":null,"url":null,"abstract":"This paper provides a new perspective to understand CNNs based on the Taylor expansion, leading to new Taylor Convolutional Networks (TaylorNets) for image classification. We introduce a principled combination of the high frequency information (i.e., detailed information) and low frequency information in the end-to-end TaylorNets, based on a nonlinear combination of the convolutional feature maps. The steerable module developed in TaylorNets is generic, which can be easily integrated into well-known deep architectures and learned within the same pipeline of the back propagation algorithm, yielding a higher representation capacity for CNNs. Extensive experimental results demonstrate the super capability of our TaylorNets which improve widely used CNNs architectures, such as conventional CNNs and ResNet, in terms of object classification accuracy on well-known benchmarks. The code will be publicly available.","PeriodicalId":436637,"journal":{"name":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Taylor Convolutional Networks for Image Classification\",\"authors\":\"Xiaodi Wang, Ce Li, Yipeng Mou, Baochang Zhang, J. Han, Jianzhuang Liu\",\"doi\":\"10.1109/WACV.2019.00140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a new perspective to understand CNNs based on the Taylor expansion, leading to new Taylor Convolutional Networks (TaylorNets) for image classification. We introduce a principled combination of the high frequency information (i.e., detailed information) and low frequency information in the end-to-end TaylorNets, based on a nonlinear combination of the convolutional feature maps. The steerable module developed in TaylorNets is generic, which can be easily integrated into well-known deep architectures and learned within the same pipeline of the back propagation algorithm, yielding a higher representation capacity for CNNs. Extensive experimental results demonstrate the super capability of our TaylorNets which improve widely used CNNs architectures, such as conventional CNNs and ResNet, in terms of object classification accuracy on well-known benchmarks. The code will be publicly available.\",\"PeriodicalId\":436637,\"journal\":{\"name\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2019.00140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2019.00140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提供了一个新的视角来理解基于泰勒展开的cnn,导致新的泰勒卷积网络(TaylorNets)用于图像分类。基于卷积特征映射的非线性组合,我们在端到端泰勒网络中引入了高频信息(即详细信息)和低频信息的原则组合。TaylorNets开发的可操纵模块是通用的,可以很容易地集成到已知的深度架构中,并在反向传播算法的同一管道中学习,从而为cnn提供更高的表示能力。大量的实验结果表明,我们的TaylorNets在众所周知的基准上提高了广泛使用的cnn架构(如传统cnn和ResNet)在对象分类精度方面的超强能力。代码将是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taylor Convolutional Networks for Image Classification
This paper provides a new perspective to understand CNNs based on the Taylor expansion, leading to new Taylor Convolutional Networks (TaylorNets) for image classification. We introduce a principled combination of the high frequency information (i.e., detailed information) and low frequency information in the end-to-end TaylorNets, based on a nonlinear combination of the convolutional feature maps. The steerable module developed in TaylorNets is generic, which can be easily integrated into well-known deep architectures and learned within the same pipeline of the back propagation algorithm, yielding a higher representation capacity for CNNs. Extensive experimental results demonstrate the super capability of our TaylorNets which improve widely used CNNs architectures, such as conventional CNNs and ResNet, in terms of object classification accuracy on well-known benchmarks. The code will be publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信