Hilbert模群的代数和拓扑k理论

Luis Jorge S'anchez Saldana, Mario Vel'asquez
{"title":"Hilbert模群的代数和拓扑k理论","authors":"Luis Jorge S'anchez Saldana, Mario Vel'asquez","doi":"10.4310/HHA.2018.V20.N2.A19","DOIUrl":null,"url":null,"abstract":"In this paper we provide descriptions of the Whitehead groups with coefficients in a ring of the Hilbert modular group and its reduced version, as well as for the topological K-theory of $C^*$-algebras, after tensoring with $\\mathbb{Q}$, by computing the source of the assembly maps in the Farrell-Jones and the Baum-Connes conjecture respectively. We also construct a model for the classifying space of the Hilbert modular group for the family of virtually cyclic subgroups.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The algebraic and topological K-theory of the Hilbert Modular Group\",\"authors\":\"Luis Jorge S'anchez Saldana, Mario Vel'asquez\",\"doi\":\"10.4310/HHA.2018.V20.N2.A19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we provide descriptions of the Whitehead groups with coefficients in a ring of the Hilbert modular group and its reduced version, as well as for the topological K-theory of $C^*$-algebras, after tensoring with $\\\\mathbb{Q}$, by computing the source of the assembly maps in the Farrell-Jones and the Baum-Connes conjecture respectively. We also construct a model for the classifying space of the Hilbert modular group for the family of virtually cyclic subgroups.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/HHA.2018.V20.N2.A19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/HHA.2018.V20.N2.A19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文分别通过计算Farrell-Jones猜想和Baum-Connes猜想中的集合映射的源,给出了Hilbert模群及其简化版环上带系数的Whitehead群的描述,以及$C^*$-代数在$\mathbb{Q}$张紧后的拓扑k理论。构造了虚循环子群族的Hilbert模群的分类空间模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The algebraic and topological K-theory of the Hilbert Modular Group
In this paper we provide descriptions of the Whitehead groups with coefficients in a ring of the Hilbert modular group and its reduced version, as well as for the topological K-theory of $C^*$-algebras, after tensoring with $\mathbb{Q}$, by computing the source of the assembly maps in the Farrell-Jones and the Baum-Connes conjecture respectively. We also construct a model for the classifying space of the Hilbert modular group for the family of virtually cyclic subgroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信